首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
大气科学   1篇
地球物理   6篇
地质学   14篇
海洋学   10篇
天文学   11篇
自然地理   3篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有45条查询结果,搜索用时 359 毫秒
1.
The Analyzer of Space Plasma and EneRgetic Atoms (ASPERA-3) on board Mars Express is designed to study the interaction between the solar wind and the atmosphere of Mars and to characterize the plasma and neutral gas environment in near-Mars space. Neutral Particle Detectors (NPD-1 and 2), which form part of the ASPERA-3 instrument suite, are Energetic Neutral Atom (ENA) detectors which use the time-of-flight (ToF) technique to resolve the energy of detected particles. In the present study, we perform a statistical analysis of NPD ToF data collected between 14 March 2004 and 17 June 2004 when Mars Express was located at the dayside of Mars looking toward the planet. After pre-processing and removal of UV contamination, the ToF spectra were fitted with simple analytical functions so as to derive a set of parameters. The behavior of these parameters, as a function of spacecraft position and attitude, is compared with a model, which describes ENA generation by charge exchange between shocked solar wind protons and extended Martian exosphere. The observations and the model agree well, indicating that the recorded signals are charge-exchanged shocked solar wind.  相似文献   
2.
Demidov  A. B.  Gagarin  V. I.  Eremeeva  E. V.  Artemiev  V. A.  Polukhin  A. A.  Shchuka  S. A.  Grigoriev  A. V.  Khrapko  A. N.  Flint  M. V. 《Oceanology》2021,61(5):645-661
Oceanology - Spatial and vertical variability of primary production (PP) and Chl a were studied in the framework of the 76th cruise of R/V Akademik Mstislav Keldysh to the Kara Sea from July 7 to...  相似文献   
3.
Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas   总被引:8,自引:0,他引:8  
This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information, and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal erosion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45᎒6 t a-1) mainly of the Mackenzie River, which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10᎒6 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS, the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4᎒6 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6᎒6 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.  相似文献   
4.
Thermoterraces in syngenetic ice complexes are widespread along the erosion dominated Yakutia Arctic coast. Thermoterraces progressively record quantitative information about their existence, which may be used to determine the mean shore retreat rate during the time they are present. Initial measurements of four thermoterraces on the south coast of the Dmitry Laptev Strait were carried out by the authors in 2002 and shore retreat rates were calculated. Comparison of erosion rates obtained using thermoterrace dimensions and geodetic survey results with those determined using aerial photographs showed that erosion rate values obtained in these two ways are approximately of the same order.  相似文献   
5.
The seasonal variability of the surface chlorophyll “a” (Chl-s) was studied for five different hydrological areas in the Drake Passage. The data were collected both in the field (December 2001–March 2002, and November 2007) and by satellite observations. One maximum of Chl-s was registered for the area northward of the Antarctic Polar Front in November 2007. This maximum moves southwards to the Antarctic and Continental Antarctic regions in December and January, respectively. The major factors affecting the phytoplankton growth were analyzed, namely, the decrease of the mixed water layer’s depth due to jogging during the austral late spring and summer and seasonal water temperature increase. The comparison of the field and satellite data allows us to conclude that the standard OC4v4 algorithm usually underreports the Chl-s concentration when it exceed 0.2 mg m−3.  相似文献   
6.
7.
The Late Cretaceous Badjal intrusive suite at the Far East of Russia includes a spectrum of rocks having emplaced successively in four phases, from (i) diorite and quartz diorite to (ii) granodiorite, (iii) granite and (iv) high-silica granite, various facies being distinguished within the phases. The generation of these rocks took place after the collision of a number of island arcs and a terrane now locally preserved in Sikhote-Alin region with the Asian continent, that had happened in the end of Early to the beginning of Late Cretaceous. The massifs intrude in Early Mesozoic sedimentary and volcanic–sedimentary rocks topping the basement, and in comagmatic volcanic rocks. Chemically, the granitoid rocks have high-K calc-alkaline character and form continuous and regular trends of most of major oxides and trace elements with the SiO2 contents ranging from 55 to 77 wt.%, that favors the concept of crystal fractionation. Major oxides and REE have a break at 70 wt.% SiO2 pointing to a change of precipitating mineral assemblage. Such change is also documented by the negative Eu anomaly. We believe that the fractionation of mafic minerals had to take place at the first stage of fractionation, whereas plagioclase and possibly biotite began precipitating later, as supposed by abrupt decrease of Ba. This hypothesis is in accordance with the mass balance calculations. Diorite magma compositionally similar to the first intrusive phase rocks should be taken for parental for the entire Badjal suite. Small volume of these oldest rocks makes us suggest that the parental magma was a mixture of silicic liquid and restite mineral phases that would result from the partial melting of a heterogeneous metapelite–basaltic or metapelite–amphibolitic protolith. Almost total absence of basalt and gabbro of close age in the area makes a suggestion of crustal silicic contamination of a mantle-produced basic magma unlikely. After the melting, the differentiation of the derived magmatic mixture during ascent and the separation of mineral phases acquired from the protolith (restite phases) and of newly formed ones are believed to produce the entire range of rocks of the Badjal intrusive suite, provided the progressive succession of emplacement from less to more silicic species.  相似文献   
8.
The northernmost Kamchatka Peninsula is located along the northwestern margin of the Bering Sea and consists of complexly deformed accreted terranes. Progressing inland from the northwestern Bering Sea, the Olyutorskiy, Ukelayat and Koryak superterranes (OLY, UKL and KOR) are crossed. These terranes were accreted to the backstop Okhotsk-Chukotsk volcanic-plutonic belt (OChVB) in northernmost Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlaps the terranes and units of the Koryak superterrane, and constrains their accretion time. A paleomagnetic study of blocks within the Kuyul (KUY) terrane of the Koryak superterrane was completed at two localities (Camp 2: λ=61.83°N, φ=165.83°E and Camp 3: λ=61.67°N, φ=164.75°E). At both localities, paleomagnetic samples were collected from Late Triassic (225–208 Ma) limestone blocks (2–10 m in outcrop height) within a melange zone. Although weak in remanent magnetization, two components of remanent magnetization were observed during stepwise thermal demagnetization at 32 sites. The A component of magnetization was observed between room temperature and approximately 250 °C. This magnetic component is always of downward directed inclination and shows the best grouping at relatively low degrees of unfolding. Using McFadden–Reid inclination-only statistics and averaging all site means, the resulting A component mean is Iopt=60.3°, I95=5.0° and n=36 (sites). The B magnetic component is observed up to 565 °C, at which temperature, most samples have no measurable remanent magnetization, or growth of magnetic minerals has disrupted the thermal demagnetization process. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, where bedding orientation differs within a block, most of these sites show the best grouping of B component directions at 100% unfolding, and two of the blocks display remanent magnetizations of both upward and downward directed magnetic inclination. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, the resulting overall B component paleolatitude and associated uncertainty are λobs=30.4°N or S, λ95=8.9° and n=19 (sites). When compared with the expected North America paleolatitude of λAPWP expected=57.9°N, our data support a model in which blocks within the Koryak superterrane are allochthonous and far travelled.  相似文献   
9.
10.
The analysis of the structure of the cryolithozone, facies, and thicknesses of the Quaternary sediments and the results of the physicochemical mathematical modeling of the modern shelf of the western part of the Laptev Sea support the influence of the Late Pleistocene glaciations on the heat conditions and the distribution of the permafrost in the area. A ~200-m thick glacier formed under aerial conditions from atmospheric precipitation represented the metamorphosed snow cover. According to the modeling, the long-living (from 60?50 to 10?4 ky) glacier reduced the thickness of the permafrost rocks in the reviewed shelf area for 280–360 m. The Holocene marine transgression additionally decreased the thickness from 50–140 m on the inner shelf to 220–350 m on the outer shelf. The modern submarine cryolithozone 450-0 m thick is wide-spread in the studied region from the coast to the shelf boundary (isobaths of 130–140 m), where it pinches out at a distance of ~380 km from the coast at a depth of ~250 m above the sea level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号