首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   4篇
海洋学   3篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2009年   1篇
  2003年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
The geology of the mainland and offshore of Sicily is illustrated by a few geologic sections and seismic profiles across the late Cenozoic orogenic belt of central and western Sicily and across the Sardinia Channel and Sicily Straits. This belt is the result of several tectonic events. Deformation involved mainly the sedimentary cover of the old African continental margin characterized by a broad basinal domain, flanked along its external (southern) margin by a shallow-water carbonate platform attached to Africa in the Triassic. Compressional deformation started in the more internal basinal rock assemblages overlying a thinned crust. The most important structural characteristic of the early phase of thrusting is the duplex pile forming the bulk of the chain in Central Western Sicily. The structure consists of a basal allochthon, made up of Permian to Middle Triassic layers, an intermediate duplex wedge, composed of competent Mesozoic carbonates, and a roof complex, including Upper Mesozoic-Lower Tertiary less competent rocks. Large-scale clockwise rotation of the thrusts accompanied transpressional movements in the hinterland during the Pliocene. Right oblique reverse faults modified the previous tectonic contacts between the allochthons in the hinterland zones. Contemporaneous south-directed imbrications affected the southern external areas, progressively incorporating foreland and piggyback basins. Development of the Gela Thrust System appears to be linked to the transpressional event; its accretion is also related to contemporaneous underthrusting at deeper levels of Mesozoic carbonate substratum. The older buried thrust sheets were pushed up to the surface breaching the deformed Tertiary cover of the Gela TS. Northwards in the belt post-Messinian normal growth faults opened half graben whose sedimentary fill underwent structural inversion. Alternation of extension and compression tectonics characterizes the Sicilian continental margin in the last million years.  相似文献   
2.
3.
4.

In order to unravel the tectonic evolution of the north-central sector of the Sicily Channel (Central Mediterranean), a seismo-stratigraphic analysis of single- and multi-channel seismic reflection profiles has been carried out. This allowed to identify, between 20 and 50 km offshore the central-southern coast of Sicily, a ~80-km-long deformation belt, characterized by a set of WNW–ESE to NW–SE fault segments showing a poly-phasic activity. Within this belt, we observed: i) Miocene normal faults reactivated during Zanclean–Piacenzian time by dextral strike-slip motion, as a consequence of the Africa–Europe convergence; ii) releasing and restraining bend geometries forming well-developed pull-apart basins and compressive structures. In the central and western sectors of the belt, we identified local transpressional reactivations of Piacenzian time, attested by well-defined compressive features like push-up structures and fault-bend anticlines. The reconstruction of timing and style of tectonic deformation suggest a strike-slip reactivation of inherited normal faults and the local subsequent positive tectonic inversion, often documented along oblique thrust ramps. This pattern represents a key for an improved knowledge of the structural style of foreland fold-and-thrust belts propagating in a preexisting extensional domain. With regard to active tectonics and seismic hazards, recent GPS data and local seismicity events suggest that this deformation process could be still active and accomplished through deep-buried structures; moreover, several normal faults showing moderate displacements have been identified on top of the Madrepore Bank and Malta High, offsetting the Late Quaternary deposits. Finally, inside the northern part of the Gela Basin, multiple slope failures, originated during Pleistocene by the further advancing of the Gela Nappe, reveal tectonically induced potential instability processes.

  相似文献   
5.
The continental shelf and the upper slope of the Gulf of Palermo (Southern Tyrrhenian Sea) in the depth interval ranging from 50 to 1,500 m were mapped for the first time with Multi Beam echosounder and high resolution seismic. Seven submarine canyons are confined to the upper slope or indent the shelf-edge and enter the Palermo intraslope basin at a depth of around 1,300 m. The canyons evolved through concurrent top-down turbiditic processes and bottom-up retrogressive mass failures. Most of the mass failure features of the area are related to canyon-shaping processes and only few of them are not confined to the upper slope. In general, these features probably do not represent a significant tsunami hazard along the coast. The geological element that controls the evolution of the canyons and induces sediment instability corresponds to the steep slope gradient, especially in the western sector of the Gulf, where the steepest canyons are located. The structural features mapped in the Palermo offshore contributed to the regulation of mass failure processes in the area, with direct faults and antiform structures coinciding with some of the canyon heads. Furthermore, the occurrence of pockmarks and highs that probably consist of authigenic carbonates above faulted and folded strata suggests a local relationship between structural control, fluid escape processes and mass failure. This paper presents a valuable high-resolution morphologic dataset of the Gulf of Palermo, which constitutes a reliable base for evaluating the geo-hazard potential related to slope failure in the area.  相似文献   
6.
High-resolution seismic profiles were acquired in the north Sicily offshore region with an innovative, multi-tip sparker array which lacks ringing and has a base frequency around 600 Hz. The new data, combined with published data, suggest that intra-slope and extensional basins formed as a consequence of the late Miocene (?)–early Pliocene shortening and thrusting, and the middle (?)–late Pliocene continental rifting affecting the internal side of the Sicilian-Maghrebian chain. Early (?) Pleistocene to Holocene high-amplitude and high-frequency sea-level changes resulted in repeated sub-aerial exposure and flooding of the shelf, and the deposition of cyclically arranged hemipelagic and shelf sediments. An uplift of the shelf could explain the non-preservation of the transgressive and of the lowstand wedge systems tracts in the oldest sequences.  相似文献   
7.
In order to unravel the tectonic evolution of the north-central sector of the Sicily Channel (Central Mediterranean), a seismo-stratigraphic analysis of single- and multi-channel seismic reflection profiles has been carried out. This allowed to identify, between 20 and 50 km offshore the central-southern coast of Sicily, a ~80-km-long deformation belt, characterized by a set of WNW–ESE to NW–SE fault segments showing a poly-phasic activity. Within this belt, we observed: i) Miocene normal faults reactivated during Zanclean–Piacenzian time by dextral strike-slip motion, as a consequence of the Africa–Europe convergence; ii) releasing and restraining bend geometries forming well-developed pull-apart basins and compressive structures. In the central and western sectors of the belt, we identified local transpressional reactivations of Piacenzian time, attested by well-defined compressive features like push-up structures and fault-bend anticlines. The reconstruction of timing and style of tectonic deformation suggest a strike-slip reactivation of inherited normal faults and the local subsequent positive tectonic inversion, often documented along oblique thrust ramps. This pattern represents a key for an improved knowledge of the structural style of foreland fold-and-thrust belts propagating in a preexisting extensional domain. With regard to active tectonics and seismic hazards, recent GPS data and local seismicity events suggest that this deformation process could be still active and accomplished through deep-buried structures; moreover, several normal faults showing moderate displacements have been identified on top of the Madrepore Bank and Malta High, offsetting the Late Quaternary deposits. Finally, inside the northern part of the Gela Basin, multiple slope failures, originated during Pleistocene by the further advancing of the Gela Nappe, reveal tectonically induced potential instability processes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号