首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  国内免费   1篇
地球物理   21篇
地质学   26篇
自然地理   5篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
1.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   

2.
The geomagnetic field intensity during Archaean times is evaluated from a palaeomagnetic and chronological study of a dolerite dyke intruded into the 3000 Ma Nuuk Gneisses at Nuuk (64.2°N, 51.7°W), west Greenland. Plagioclase from the dolerite dyke yields a mean K-Ar age of 2752 Ma. Palaeomagnetic directions after thermal demagnetization of the dyke and the gneiss reveal a positive baked-contact test, indicating that the high-temperature-component magnetization of the dyke is primary. Thellier experiments on 12 dyke specimens yield a palaeointensity value of 13.5±4.4 μT. The virtual dipole moment at ca. 2.8 Ga is 1.9±0.6 × 1022 Am2, which is about one-quarter of the present value. The present study and other available data imply that the Earth's magnetic field at 2.7 ∼ 2.8 Ga was characterized by a weak dipole moment and that a fairly strong geomagnetic field similar to the present intensity followed the weak field after ca. 2.6 Ga.  相似文献   
3.
Yujiro  Nishimura  Philippa M.  Black  Tetsumaru  Itaya 《Island Arc》2004,13(3):416-431
Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction‐related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite‐pumpellyite and pumpellyite‐actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 Å, the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite‐actinolite facies for which the highest temperature may be approximately 300°C. Metamorphic white mica K–Ar ages are reported for magnetic separates and <2 µm hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180–130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150–130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach–Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes).  相似文献   
4.
Chronology of Sanbagawa metamorphism   总被引:5,自引:0,他引:5  
By collating age data based on the fossil age of the protoliths, radiometric dating of the metamorphic minerals, and sedimentary records of erosion at the earth's surface, the history of the Sanbagawa metamorphism can be summarized as follows. (1) The pre-metamorphic sedimentary rocks (Carboniferous-Jurassic + Early Cretaceous?) became mixed and formed a thickened packet in the vicinity of an ancient trench through a variety of subduction-related tectono-sedimentary processes, probably in Early Cretaceous time (c., 130-120 Ma). (2) The subducted protoliths underwent progressive metamorphism reaching a maximum depth of c. 30 km in late Early Cretaceous time (c. 116 ± 10 Ma). (3) The high-P/T metamorphic rocks began to rise toward the surface (during the interval 110-50 Ma) with minimum estimates for the average cooling rate around 9-12°C/Ma and an average uplift rate around 0.4-0.5 mm/year. (4) Finally, at some stage after reaching the erosional surface, the high-P/T metamorphic rocks were covered unconformably by the middle Eocene (c. 50-42 Ma) Kuma Group. On the basis of the present chronological summary of the Sanbagawa metamorphism, the areal extent of the Sanbagawa metamorphism is also discussed with respect to the weakly metamorphosed subduction-accretion complex of the next tectonic belt to the south, the Northern Chichibu belt.  相似文献   
5.
Abstract The low grade metamorphic Jurassic accretionary complex in the western part of the Mino-Tanba Belt, Southwest Japan, is a chaotic sedimentary complex which consists of argillaceous matrices with allochthonous blocks of chert, greenstone, siliceous mudstone, terrigenous sandstone and mudstone. The complex is divided into three distinct geologic units, Units I, II and III, with a tectonic boundary (thrust) between them, forming a pile-nappe structure. They have different features for lithologies, fossil age, metamorphic condition and K-Ar age. Microfossil researches revealed that their timings of accretion were in the early Early Jurassic ( ca 195 Ma) for Unit III, in the early Middle Jurassic ( ca 175 Ma) for Unit II and in the latest Late Jurassic (ca 147 Ma) for Unit I. On the other hand, K-Ar age determinations of white mica separated from pelitic rocks of the three units clarified that the subsequent subduction-related metamorphism was 23 million years after the accretion of each unit. These results strongly suggest that the accretionary and metamorphic process had taken place episodically with an interval of 20 to 28 million years during Mesozoic time in the western part of the Mino-Tanba Belt, Southwest Japan.  相似文献   
6.
The Day Nui Con Voi belt in Vietnam is the southeasternmost part of the Red River shear zone in Asia. It is a narrow high-grade metamorphic core complex consisting of garnet–sillimanite–biotite gneisses, mylonite bands, amphibolite layers and migmatites. Geothermobarometric study of the complex revealed that the peak metamorphism took place under amphibolite-facies conditions of 690−60+30°C and 0.65±0.15 GPa and the subsequent mylonitization occurred under greenschist-facies conditions of 480°C and under 0.3 GPa. Fifteen synkinematic hornblende and biotite separates from gneisses, amphibolites and mylonites were dated with the K/Ar method. Hornblende separates from the Day Nui Con Voi give K–Ar ages of 26.4–28.5 Ma, and the biotite separates do give 24.5–24.7 Ma. Combination of thermobarometric and geochronological data yields the cooling history of 500°C at 28 Ma and 300°C at 24 Ma with a cooling rate of 70–110°C Ma−1, and 23 km post-metamorphic exhumation of the core complex. The first 16 km exhumation from the peak of metamorphism (at probably 31 Ma) to 28 Ma was triggered by the left-lateral strike-slip displacement of the Red River shear zone.  相似文献   
7.
Middle Eocene conglomerates which overlie the Sanbagawa metamorphic rocks contain clasts of metamorphic rock with isotope ages of 120-85 Ma, which fall within the age range reported from the Sanbagawa metamorphic rocks. They were derived from the chlorite to oligoclase zones of the Sanbagawa metamorphic belt. Clasts of garnet amphibolite and oligoclase-biotite schist show a mineral assemblage similar to the highest grade Sanbagawa schists. However, the metamorphic temperatures estimated by various mineralogical thermometers show that some of the clasts were formed at higher temperatures than the in situ Sanbagawa metamorphic rocks. Such higher grade rocks were at the surface by the Middle Eocene and for the most part they have been eroded away. Cretaceous and post-Cretaceous sediments overlie, or are in fault contact with, the Sanbagawa metamorphic rocks which suggests that rocks in the belt were uplifted and eroded from the latest Cretaceous to Middle Eocene time after strike-slip movement along the Median Tectonic Line. Since the Middle Eocene, the belt has experienced relatively slow uplift which was locally around 2 km in central Shikoku.  相似文献   
8.
White mica (phengite and paragonite) K–Ar ages of eclogite-facies Sanbagawa metamorphic rocks (15 eclogitic rocks and eight associated pelitic schists) from four different localities yielded ages of 84–89 Ma (Seba, central Shikoku), 78–80 Ma (Nishi-Iratsu, central Shikoku), 123 and 136 Ma (Gongen, central Shikoku), and 82–88 Ma (Kotsu/Bizan, eastern Shikoku). With the exception of a quartz-rich kyanite-bearing eclogite from Gongen, white mica ages overlap with the previously known range of phengite K–Ar ages of pelitic schists of the Sanbagawa metamorphic belt and can be distinguished from those of the Shimanto metamorphic belt. The similarity of K–Ar ages between the eclogites and surrounding pelitic schists supports a geological setting wherein the eclogites experienced intense ductile deformation with pelitic schists during exhumation. In contrast, phengite extracted from the Gongen eclogite, which is less overprinted by a ductile shear deformation during exhumation, yielded significantly older ages. Given that the Gongen eclogite is enclosed by the Higashi-Akaishi meta-peridotite body, these K–Ar ages are attributed to excess 40Ar gained during an interaction between the eclogite and host meta-peridotite with mantle-derived noble gas (very high 40Ar/36Ar ratio) at eclogite-facies depth. Fluid exchange between deep-subducted sediments and mantle material might have enhanced the gain of mantle-derived extreme 40Ar in the meta-sediment. Although dynamic recrystallization of white mica can reset the Ar isotope system, limited-argon-depletion due to lesser degrees of ductile shear deformation of the Gongen eclogite might have prevented complete release of the trapped excess argon from phengites. This observation supports a model of deformation-controlled K–Ar closure temperature.  相似文献   
9.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号