首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
大气科学   2篇
地球物理   2篇
地质学   11篇
海洋学   1篇
天文学   11篇
自然地理   6篇
  2021年   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  1999年   1篇
  1984年   1篇
  1968年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Palaeoecology, as an ecological discipline, is able to provide relevant inputs for conservation science and ecosystem management, especially for issues involving long-term processes, such as ecological succession, migration, adaptation, microevolution, and extinction. This use of palaeoecology has been noted for several decades, and it has become widely accepted, especially in the frame of ongoing and near-future global warming and its potential biotic consequences. Selected palaeoecological insights of interest for conservation include the following: 1) species respond in an individualistic manner to environmental changes that lead to changes in community composition, suggesting that future ecosystems would have no modern analogues; 2) in the short-term, acclimation is more likely a response of species that are expected to persist in the face of global warming, but the possibility of evolutionary change linked to the existence of pre-adapted genomes cannot be dismissed; 3) species unable to acclimate or adapt to new conditions should migrate or become extinct, which has been observed in past records; 4) current extinction estimates for the near-future should be revised in light of palaeoecological information, which shows that spatial reorganisations and persistence in suitable microrefugia have been more common than extinction during the Quaternary; 5) biotic responses to environmental changes do not necessarily follow the rules of equilibrium dynamics but depend on complex and non-linear processes that lead to unexpected “surprises”, which are favoured by the occurrence of thresholds and amplifying positive feedbacks; 6) threshold responses can cause the movement of ecosystems among several potentially stable states depending on their resilience, or the persistence of transient states; 7) species and their communities have responded to environmental changes in a heterogeneous fashion according to the local and regional features, which is crucial for present and future management policies; 8) the global warming that occurred at the end of the Younger Drays cold reversal (ca 13.0 to 11.5 cal kyr BP) took place at similar rates and magnitudes compared to the global warming projected for the 21st century, thus becoming a powerful past analogue for prediction modelling; 9) environmental changes have acted upon ecosystems in an indirect way by modifying human behaviour and activities that, in turn, have had the potential of changing the environment and enhancing the disturbance effects by synergistic processes involving positive feedbacks; 10) the collapse of past civilisations under climate stress has been chiefly the result of inadequate management procedures and weaknesses in social organisation, which would be a warning for the present uncontrolled growth of human population, the consequent overexploitation of natural resources, and the continuous increase of greenhouse gas emissions; 11) the impact of fire as a decisive ecological agent has increased since the rise of humans, especially during the last millennia, but anthropic fires were not dominant over natural fires until the 19th century; 12) fire has been an essential element in the development and ecological dynamics of many ecosystems, and it has significantly affected the worldwide biome distribution; 13) climate–fire–human synergies that amplify the effects of climate, or fire alone, have been important in the shaping of modern landscapes. These general paleoecological observations and others that have emerged from case studies of particular problems can improve the preservation of biodiversity and ecosystem functions. Nature conservation requires the full consideration of palaeoecological knowledge in an ecological context, along with the synergistic cooperation of palaeoecologists with neoecologists, anthropologists, and conservation scientists.  相似文献   
2.
3.
The summits of the table mountains (tepuis) from the Neotropical Guayana region are remote environments suitable for palaeoecological studies with evolutionary, biogeographical and palaeoclimatic implications. Here, using palynological analyses of two radiocarbon‐dated peat bogs from a tepui summit, the Holocene palaeovegetational trends are reconstructed, and related to possible forcing factors. Because of the pristine character of the Guaiquinima summit, the recorded palaeoenvironmental changes are probably due to natural causes, which makes them valuable archives of the natural component of climatic change at a millennial time scale. The sequence begins with pioneer communities or meadows similar to present‐day ones, between about 8.4 and 4.5 ky BP. After this date, and until about 2 kyr BP the expansion of gallery forests suggests an increase in precipitation, documented also at regional (Neotropical) level. Between ca. 2 kyr BP and the last century, gallery forests are replaced by forests characteristic of the upper Guaiquinima altitudes, coinciding with a regional phase of reduced moisture. The present‐day meadows, established relatively quickly during the last century, substituted the former upland forests. In the locality studied, the main controlling factor of the vegetation during the Holocene seems to have been the moisture balance. In contrast to other tepui summits, there is no clear evidence for changes linked to temperature oscillations. This could be due to the elevation of the site, far from any characteristic ecological boundary, that makes it insensitive to this parameter. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
We present measurements of magnetic field strength and geometry on the surfaces of T Tauri stars (TTS) with and without circumstellar disks. We use these measurements to argue that magnetospheric accretion models should not assume that a fixed fraction of the stellar surface contains magnetic field lines that couple with the disk. We predict the fractional area of accretion footpoints, using magnetospheric accretion models and assuming field strength is roughly constant for all TTS. Analysis of Zeeman broadened infrared line profiles shows that individual TTS each have a distribution of surface magnetic field strengths extending up to 6 kG. Averaging over this distribution yields mean magnetic field strengths of 1-3 kG for all TTS, regardless of whether the star is surrounded by a disk. These strong magnetic fields suggest that magnetic pressure dominates gas pressure in TTS photospheres, indicating the need for new model atmospheres. The He I 5876 Å emission line in TTS can be strongly polarized, so that magnetic field lines at the footpoints of accretion have uniform polarity. The circular polarization signal appears to be rotationally modulated, implying that accretion and perhaps the magnetosphere are not axisymmetric. Time series spectropolarimetry is fitted reasonably well by a simple model with one magnetic spot on the surface of a rotating star. On the other hand, spectropolarimetry of photospheric absorption lines rules out a global dipolar field at the stellar surface for at least some TTS.  相似文献   
5.
Pollen analysis of sediments from a high-altitude (4215 m), Neotropical (9°N) Andean lake was conducted in order to reconstruct local and regional vegetation dynamics since deglaciation. Although deglaciation commenced 15,500 cal yr B.P., the area around the Laguna Verde Alta (LVA) remained a periglacial desert, practically unvegetated, until about 11,000 cal yr B.P. At this time, a lycopod assemblage bearing no modern analog colonized the superpáramo. Although this community persisted until 6000 cal yr B.P., it began to decline somewhat earlier, in synchrony with cooling following the Holocene thermal maximum of the Northern Hemisphere. At this time, the pioneer assemblage was replaced by a low-diversity superpáramo community that became established 9000 cal yr B.P. This replacement coincides with regional declines in temperature and/or available moisture. Modern, more diverse superpáramo assemblages were not established until 4600 cal yr B.P., and were accompanied by a dramatic decline in Alnus, probably the result of factors associated with climate, humans, or both. Pollen influx from upper Andean forests is remarkably higher than expected during the Late Glacial and early to middle Holocene, especially between 14,000 and 12,600 cal yr B.P., when unparalleled high values are recorded. We propose that intensification of upslope orographic winds transported lower elevation forest pollen to the superpáramo, causing the apparent increase in tree pollen at high altitude. The association between increased forest pollen and summer insolation at this time suggests a causal link; however, further work is needed to clarify this relationship.  相似文献   
6.
We have used new, deep, visible and near infrared observations of the compact starburst cluster in the giant HII region NGC 3603 and its surroundings with the WFC3 on HST and HAWK-I on the VLT to study in detail the physical properties of its intermediate mass (∼1–3 M) stellar population. We show that after correction for differential extinction and actively accreting stars, and the study of field star contamination, strong evidence remains for a continuous spread in the ages of pre-main sequence stars in the range ∼2 to ∼30 Myr within the temporal resolution available. Existing differences among presently available theoretical models account for the largest possible variation in shape of the measured age histograms within these limits. We also find that this isochronal age spread in the near infrared and visible Colour-Magnitude Diagrams cannot be reproduced by any other presently known source of astrophysical or instrumental scatter that could mimic the luminosity spread seen in our observations except, possibly, episodic accretion. The measured age spread and the stellar spatial distribution in the cluster are consistent with the hypothesis that star formation started at least 20–30 Myrs ago progressing slowly but continuously up to at least a few million years ago. All the stars in the considered mass range are distributed in a flattened oblate spheroidal pattern with the major axis oriented in an approximate South-East–North-West direction, and with the length of the equatorial axis decreasing with increasing age. This asymmetry is most likely due to the fact that star formation occurred along a filament of gas and dust in the natal molecular cloud oriented locally in this direction.  相似文献   
7.
Lakes with varved sediments are especially well suited for paleoecological study, from annual to even seasonal resolution. The interpretative power of such high-resolution paleoenvironmental reconstructions relies on the availability of modern analogs with the same temporal resolution. We studied seasonal pollen sedimentation in varved Lake Montcortès, Central Pyrenees (Spain), as a modern analog for high-resolution reconstruction of Late Holocene vegetation and landscape dynamics. Seasonal samples were obtained from sediment traps that were submerged near the maximum water depth for a 2-year period (fall 2013 to fall 2015). Seasonal pollen sedimentation was compared with meteorological variables from a nearby weather station. Bulk pollen sedimentation, dominated by Pinus (pine) and Quercus (oak), followed a clear seasonal pattern that peaked during the spring/summer, coinciding with maximum temperature and precipitation, minimum relative humidity and moderate winds from the SSE. Pollen sedimentation lags (PSL) were observed for most pollen types, as substantial amounts of pollen were found in the traps outside of their respective flowering seasons. Two pollen assemblages were clearly differentiated by their taxonomic composition, corresponding to spring/summer and fall/winter. This pattern is consistent with existing interpretation of the sediment varves, specifically, that varves are formed by two-layer couplets that represent the same seasonality as pollen. We concluded that pollen sedimentation in Lake Montcortès exhibits a strong seasonal signal in the quantity of pollen, the taxonomic composition of the pollen assembalges, and relationships between the pollen and meteorological variables. Thus, varved sediments provide a potentially powerful tool for paleoecological reconstruction at seasonal resolution. This method could be used not only to identify paleoenvironmental trends, but also to identify annual layers and therefore date sediments, even in the absence of evident sediment laminations. A satisfactory explanation of PSL will require further studies that examine internal lake dynamics and pollen production/dispersal patterns.  相似文献   
8.
This paper evaluates the potential usefulness of non-pollen palynomorphs or NPPs (microfossils other than pollen and spores present in palynological preparations) contained in lake sediments in the paleolimnological reconstruction of high altitude environments (>4,000 m) from the Venezuelan Andes. A synthetic, quantitative approach is employed, instead of the classical analytical and mostly qualitative approach commonly used so far for NPPs. The main sources of variation are the PediastrumBotryococcus alternation and the relationship between these two algae and animal remains such as Acari legs, postabdomina of Cladocera, mandibles of other invertebrates, and an unknown type called LVA-1. Other significant microfossils are remains of Rivularia-type and turbellarian oocytes, including Gyratrix. The sequence initiates around 15,000 calibrated years before present (cal BP) with the deglaciation of the lake catchment, high water levels and still cold climates. A phase of lower lake levels was recorded between about 12,000 and 6,000 cal BP. Temperatures increased by around 9,000 and 7,000 cal BP, and then decreased until 6,000 cal BP. Since that time, both lake levels and temperature increased again and stabilized at about 4,000 cal BP, when they reach modern-like values. These results show a good agreement with previous studies based on pollen, diatom and oxygen isotope analyses, and provide additional paleoecological information, as for example the possibility of a previously unrecorded Younger Dryas signal. The inclusion of quantitative NPP analysis in routine paleolimnological studies using synthetic methods is thus recommended. Possible future improvements are suggested, mainly those related with the development and use of NPP modern analogs.  相似文献   
9.
The southern Gran Sabana (SE Venezuela) holds a particular type of neotropical savanna characterized by the local occurrence of morichales (Mauritia palm swamps), in a climate apparently more suitable for rain forests. We present a paleoecological analysis of the last millennia of Lake Chonita (4°39′N–61°0′W, 884 m elevation), based on biological and physico-chemical proxies. Savannas dominated the region during the last millennia, but a significant vegetation replacement occurred in recent times. The site was covered by a treeless savanna with nearby rainforests from 3640 to 2180 cal yr BP. Water levels were higher than today until about 2800 cal yr BP. Forests retreated since about 2180 cal yr BP onwards, likely influenced by a higher fire incidence that facilitated a dramatic expansion of morichales. The simultaneous appearance of charcoal particles and Mauritia pollen around 2000 cal yr BP supports the potential pyrophilous nature of this palm and the importance of fire for its recent expansion. The whole picture suggests human settlements similar to today – in which fire is an essential element – since around 2000 yr ago. Therefore, present-day southern Gran Sabana landscapes seem to have been the result of the synergy between biogeographical, climatic and anthropogenic factors, mostly fire.  相似文献   
10.
Using the Near Infrared Spectrometer (NIRSPEC) spectrograph at Keck II, we have obtained infrared (IR) echelle spectra covering the range  1.5 –1.8 μm  for the moderately reddened bulge globular clusters NGC 6342 and 6528, finding  [Fe/H]=−0.60  and −0.17 dex, respectively. We measure an average α-enhancement of ≈+0.33 dex in both clusters, consistent with previous measurements on other metal-rich bulge clusters, and favouring the scenario of a rapid bulge formation and chemical enrichment. We also measure very low 12C/13C isotopic ratios (≈5 in NGC 6342 and ≈8 in NGC 6528), suggesting that extra-mixing mechanisms resulting from cool bottom processing are at work during evolution along the red giant branch (RGB).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号