首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
大气科学   1篇
地质学   1篇
海洋学   19篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2004年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The results of experiments on the physical modeling of long-range infrasonic propagation in the atmosphere are given. Such modeling is based on the possible coincidence between the forms of the vertical profiles of the effective sound speed stratification in the atmospheric boundary layer (between 0 and 600 m for the case under consideration) and in the atmosphere as a whole (from the land surface up to thermospheric heights (about 150 km)). The source of acoustic pulses was an oscillator of detonation type. Owing to the detonation of a gas mixture of air (or oxygen) and propane, this generator was capable of producing short, powerful (the maximum acoustic pressure was on the order of 30 to 60 Pa at a distance of 50 to 100 m from the oscillator), and sufficiently stable acoustic pulses with a spectral maximum at frequencies of 40 to 60 Hz and a pulsing period of 20 to 30 s. The sites of acoustic-signal recording were located at different distances (up to 6.5 km) from the source and in different azimuthal directions. The temperature and wind stratifications were monitored in real time during the experiments with an acoustic locator—a sodar—and a temperature profiler. The data on the physical modeling of long-range sound propagation in the atmosphere are analyzed to verify the physical and mathematical models of predicting acoustic fields in the inhomogeneous moving atmosphere on the basis of the parabolic equation and the method of normal waves. A satisfactory agreement between calculated and experimental data is obtained. One more task was to compare the theoretical relations between variations in the azimuths and angles of tilting of sound rays about the horizon and the parameters of anisotropic turbulence in the lower troposphere and stratosphere with the experimental data. A theoretical interpretation of the experimental results is proposed on the basis of the theory of anisotropic turbulence in the atmosphere. The theoretical and experimental results are compared, and a satisfactory agreement between these results is noted.  相似文献   
2.
Results obtained from simulating the propagation of infrasonic waves from the Chelyabinsk meteoroid explosion observed on February 15, 2013, are given. The pseudodifferential parabolic equation (PDPE) method has been used for calculations. Data on infrasonic waves recorded at the IS31 station (Aktyubinsk, Kazakhstan), located 542.7 km from the likely location of the explosion, have been analyzed. Six infrasonic arrivals (isolated clearly defined pulse signals) were recorded. It is shown that the first “fast” arrival (F) corresponds to the propagation of infrasound in a surface acoustic waveguide. The rest of the arrivals (T1–T5) are thermospheric. The agreement between the results of calculations based on the PDPE method and experimental data is satisfactory. The energy E of the explosion has been estimated using two methods. One of these methods is based on the law of conservation of the acoustic pulse I, which is a product of the wave profile area S/2 of the signal under analysis and the distance to its source E I [kt] = 1.38 × 10–10 (I [kg/s])1.482. The other method is based on the relation between the energy of explosion and the dominant period T of recorded signal E T [kt] = 1.02 × (T [s]2/σ)3/2, where σ is the dimensionless distance determining the degree of nonlinear effects during the propagation of sound along ray trajectories. According to the data, the explosion energy E I,T ranges from 1.87 to 32 kt TNT.  相似文献   
3.
The results of simulating the influence of an atmospheric fine structure on the characteristics of acoustic signals propagating throughout the atmosphere for long distances from their sources are presented. A numerical model of an atmospheric fine inhomogeneous structure within the height range z = 20…120 km is proposed to perform calculations. This model and its numerical parameters are based on the current notions of the formation of an atmospheric fine structure due to internal gravity waves. The numerical calculations were performed using the parabolic-equation method. A spatial structure of the acoustic field and the structure of an acoustic signal at long distances from a pulsed source were calculated. It is shown that the presence of an atmospheric fine structure results in a scattering of acoustic signals and their recording in the geometric shadow region. The results of calculations of signal forms are in a satisfactory agreement with data on signals recorded in the geometric shadow region which is formed at a distance of about 300 km from an experimental explosion.  相似文献   
4.
5.
Izvestiya, Atmospheric and Oceanic Physics - Data on internal gravity and infrasound waves recorded during the passage of both warm and cold fronts throughout Moscow, which are associated with the...  相似文献   
6.
Results of acoustic sounding of the lower troposphere with the aid of detonation generators of acoustic pulses are given. This sounding method is based on a partial reflection of acoustic pulses with shock fronts from vertical wind-velocity and temperature gradients continuously varying with height in the troposphere and on the penetration of reflected signals into the region of acoustic shadow. Experiments on tropospheric sounding were carried out on the ground of the Barva Innovation Scientific and Technical Center (Talin, Armenia) in September 2015. In these experiments, an antihail acoustic system was first used as a generator of acoustic pulses. Experimental results have been compared with data obtained earlier in similar experiments carried out in the vicinity of Zvenigorod with the use of a special detonation generator of acoustic pulses. Due to the high resolution (in height) of the sounding method, which reaches 1 m in the stably stratified lower troposphere within a height range of 250–600 m, the vertical profiles of layered effective sound speed inhomogeneities with vertical scales from a few to a few tens of meters have been retrieved. The influence of these fluctuations on the form and amplitude of acoustic signals at a long distance from their pulsed source has been studied.  相似文献   
7.
A wave theory of propagation of an acoustic pulse in a moving stratified atmospheric layer above the ground with a finite impedance of an underlying ground surface is developed. The shapes of acoustic signals in a near-ground atmospheric waveguide, which are formed due to temperature inversion and a vertical shear of the wind velocity, are calculated based on this theory. These signals are compared with those measured during the experiments where vertical profiles of the wind velocity and temperature in an atmospheric boundary layer have been continuously controlled using a sodar, a temperature profile meter, and acoustic anemometers or thermometers mounted on a 56-meter-high mast. The joint action of a near-ground acoustic waveguide, the impedance of the underlying surface, and a vertical layered structure of the boundary atmospheric layer on a signal shape far from the acoustic source are studied.  相似文献   
8.
Izvestiya, Atmospheric and Oceanic Physics - The main characteristics (coherences, phase velocities, propagation directions, characteristic periods, and amplitudes) of wave disturbances in the...  相似文献   
9.
Using the phenomenon of the partial reflection of acoustic waves from anisotropic wind-velocity and temperature inhomogeneities in the lower troposphere is justified in determining the structure of these inhomogeneities. The data (obtained with the method of bistatic acoustic sounding) on signals reflected from stratified inhomogeneities in the lower 600-m layer of the troposphere are given. A detonation-type pulsed acoustic source was used. The methods of isolating a small (in amplitude) reflected signal against the background of noise and determining the reflecting-layer height and the partial-reflection coefficient from the measured parameters (time delay and amplitude) of a reflected signal are presented. The method of estimating the vertical gradients of the effective sound speed and the squared acoustic refractive index from the partial-reflection coefficient previously calculated is described on the basis of an Epstein transition-layer model. The indicated parameters are experimentally estimated for concrete cases of recording reflected signals. A comparison of our estimates with independent analogous data simultaneously obtained for the same parameters with monitoring instruments (a sodar and a temperature profiler) has yielded satisfactory results.  相似文献   
10.
A model of anisotropic fluctuations forming in wind velocity and air temperature in a stably stratified atmosphere is described. The formation mechanism of these fluctuations is associated with the cascade transport of energy from sources of atmospheric gravity waves to wave disturbances with shorter vertical scales (than the scales of the initial disturbances generated by the sources) and, at the same time, with longer horizontal scales. This model is used to take into account the effects of infrasonic-wave scattering from anisotropic inhomogeneities of the effective sound speed in the atmosphere. Experimental data on the stratospheric, mesospheric, and thermospheric arrivals of signals (generated by explosion sources such as surface explosions and volcanoes) in the zones of acoustic shadow are interpreted on the basis of the results of calculations of the scattered infrasonic field in the context of the parabolic equation. The signals calculated with consideration for the fine structure of wind velocity and air temperature are compared with the signals observed in a shadow zone. The possibility to acoustically sound this structure at heights of both the middle and upper atmospheres is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号