首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
地球物理   9篇
地质学   7篇
海洋学   10篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1980年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Several mechanisms have been proposed to account for the rotation of the nearly north-south abyssal hill fabric formed on the East Pacific Rise north of the Easter Microplate to the nearly east-west trends in the northern microplate interior. Proposed mechanisms include rigid microplate rotation, transform fault – parallel shear, and bookshelf faulting during the transfer of lithosphere from the Nazca Plate to the microplate. We used a submersible magnetometer on a NAUTILE dive program to measure the magnetic vector rotation of a pillow basalt and dike spur near Pito Deep, the present location of the tip of the propagating rift system that created the microplate. Our results, although too limited to draw strong conclusions from, suggest clockwise rotations of the seafloor magnetic vectors inconsistent with the transform-parallel shear model, and larger than can be explained solely by rigid microplate rotation.  相似文献   
2.
A detailed submersible investigation of a 20-km segment of the East Pacific Rise near 12°50′N between the Orozco and Clipperton fracture zones has resulted in the localization of 24 active hydrothermal vent fields and over 80 sites of sulfide accumulations. The active vents range from low-temperature vents characterized by exotic benthic communities to high-temperature “black smokers” and the deposition of polymetallic sulfides. The study is based upon a combination of fine scale topography obtained using the SEABEAM sonar system on N/O “Jean Charcot”, camera lowerings along the axis using the RAIE vehicle, and 32 dives by the submersible “Cyana” operating from N/O “Le Suroit”. The observations made between the Orozco and Clipperton fracture zones show topographic highs situated along the strike of the accreting plate segment separated by a small ridge offset at 11°49′N. This offset divides this portion of the ridge into two separate spreading segments each of which has a primary topographic high along strike. Secondary highs are associated with each segment of the ridge separated by either small offsets (or relay zones) or in some cases, zones where spreading centers overlap. Dives made on the tops of both primary highs (12°50′N and 11°30′N) confirm the presence inferred from previous surface work of high-temperature vent fields while one reconnaissance dive (14°20′N) near the Orozco fracture zone/ridge axis intersection reveals the absence of any hydrothermal activity in the present or recent past. The vast majority of vent fields investigated were found at the topographic high near 12°50′N, are associated with the most recent period of volcanism, and are confined to lava ponds situated within the axial graben.  相似文献   
3.
4.
Submersible investigations along the East Rift segments, the Pito Deep and the Terevaka transform fault of the Easter microplate eastern boundary, and on a thrust-fault area of the Nazca Plate collected a variety of basalts and dolerites. The volcanics consist essentially of depleted (N-MORB), transitional (T-MORB) and enriched (E-MORB) basalts with low (0.01−0.1, < 0.7), intermediate (0.12–0.25, 0.7–1.2) and high (> 0.25, > 1.2–2) K/Ti and(La/Sm)N ratios, respectively. The Fe-Ti-rich ferrobasalt encountered among the N-MORBs are found on the Pito Deep Central volcano, on the Terevaka intra-transform ridge, on the ancient (< 2.5 Ma) Easter microplate (called EMP, comprising the East Rift Inner pseudofaults and Pito Deep west walls) and on thrust-fault crusts. The most enriched (T- and E-MORB) volcanics occur along the East Rift at 25 °50′–27 °S (called 26 °S East Rift) and on the Pito seamount located near the tip of the East Rift at 23 °00′–23 °40′S (called 23 °S East Rift). The diversity in incompatible element ratios of the basalts in relation to their structural setting suggests that the volcanics are derived from a similar heterogenous mantle which underwent variable degrees of partial melting and magma mixing. In addition the Pito seamount volcanics have undergone less crystal fractionation (< 20%) than the lavas from the other Easter microplate structures (up to 35–45%). The tectonic segmentation of the East Rift observed between 23 and 27 °S corresponds to petrological discontinuities related to Mg# variations and mantle melting conditions. The highest Mg# (> 61) are found on topographic highs (2000–2300 m) and lower values (Mg# < 56) at the extremities of the East Rift segments (2500–5600 m depths). The deepest area (5600 m) along the East Rift is located at 23 °S and coincides with a Central volcano constructed on the floor of the Pito Deep. Three major compositional variabilities of the volcanics are observed along the East Rift segments studied: (1) the 26 °S East Rift segment where the volcanics have intermediate Na8 (2.5–2.8%) and Fe8 (8.5–11%) contents; (2) the 23 °S East Rift segment (comprising Pito seamount and Pito Deep Central volcano) which shows the highest (2.9–3.4%) values of Na8 and a low (8–9%) Fe8 content; and (3) the 25 °S (at 24 °50′–26 °10′S) and the 24 °S (at 24 °10′–25 °S) East Rift segments where most of the volcanics have low to intermediate Na8 (2.6–2.0%) and a high range of Fe8 (9–13%) contents. When modeling mantle melting conditions, we observed a relative increase in the extent of partial melting and decreasing melting pressure. These localized trends are in agreement with a 3-D type diapiric upwelling in the sense postulated by Niu and Batiza (1993). Diapiric mantle upwelling and melting localized underneath the 26, 25 and 23 °S (Pito seamount and Central volcano) East Rift segments are responsable for the differences observed in the volcanics. The extent of partial melting varies from 14 to 19% in the lithosphere between 18 and 40 km deep as inferred from the calculated initial (Po=16kbar) and final melting (Pf=7kbar) pressures along the various East Rift segments. The lowest range of partial melting (14–16%) is confined to the volcanics from 23 °S East Rift segment including the Pito seamount and the Central volcano. The Thrust-fault area, and the Terevaka intra-transform show comparable mantle melting regimes to the 25 and 26 °S East Rift segments. The older lithosphere of the EMP interior is believed to have been the site of high partial melting (17–20%) confined to the deeper melting area (29–50 km). This increase in melting with increasing pressure is similar to the conditions encountered underneath the South East Pacific Rise (13–20 °S).  相似文献   
5.
Hekinian  R.  Juteau  T.  Gràcia  E.  Sichler  B.  Sichel  S.  Udintsev  G.  Apprioual  R.  Ligi  M. 《Marine Geophysical Researches》2000,21(6):529-560
The St. Paul F.Z. is a large structural domain made up of multiple transform faults interrupted by several Intra-Transform Ridge (ITR) spreading segments. Two regions were studied in details by submersible: (1) The ITR short (<20 km in length) segment near 0° 37N–25° 27W and 1° N–27° 42W and (2) The St. Peter and St. Paul's Rocks (SPPR) massif located at 29° 25W (¡3700 m depth). (1) The short ITR segments consist of a magma starved rift valley with recent volcanic activities at 4700 m depth. A geological profile made along the rift valley wall showed localized volcanics (basalts and dykes) which are believed to overlay and intrude the ultramafics. The geological setting and the high ultramafic/volcanic ratio suggest an extremely low magmatic supply and crustal-mantle uplift during lithospheric stretching and denudation. (2) The St. Peter and St. Paul's Rocks (SPPR) massif consists of a sigmoidal ridge within the active transform zone. The SPPR is divided into two different geological domains called the North and the South Ridges. The North Ridge consists of strongly tectonized fault scarps composed of banded and mylonitized peridotite, sporadic gabbros (3900–2500 m) and metabasalts (2700–1700 m). The South Ridge is less tectonized with undeformed, serpentinized spinel lherzolite (2000–1400 m) and basalts. Extensional motion and denudation accompanied by diapirism affected the South Ridge within a transform domain. Instead, the North Ridge was formed during an important strike-slip and faulting motion resulting in the uplifted portion of the St. Paul F.Z. transverse ridge. There is a regional compositional variation of the volcanics where E-MORBs and alkali basalts are produced on the SPPR massif and are comparable to the adjacent northern segments of the Mid-Atlantic Ridge. On the other hand, N and T- MORBs collected from the eastern part of the St. Paul F.Z. (25° 27W IRT) are similar to the volcanics from the southern segments of the MAR. The peridotites exposed in these provinces (SPPR and ITR) are similar in their REE and trace element distribution. Different degrees (3–15%) of partial melting of a mixed composite mantle consisting of spinel and amphibole bearing lherzolite veined with 5–40% clinopyroxenite gave rise to the observed MORBs and alkali basalts.  相似文献   
6.
The Easter microplate-Crough Seamount region located between 25° S–116° W and 25° S–122° W consists of a chain of seamounts forming isolated volcanoes and elongated (100–200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065°), to the present day general spreading direction (N 100°) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26°30 S–115° W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges (< 2000 m high) bounding the Southwest Rift of the microplate consists of fault scarps where pillow lava, dolerite, and metabasalts are exposed. The degree of rock alternation inferred from palagonitization of glassy margins suggests that the volcanic ridges are as old as the shallow ridges bounding the Southwest Rift of the microplate. The volcanics found on the various structures west of the microplate consist of depleted (K/Ti < 0.1), transitional (K/Ti = 0.11–0.25) and enriched (K/Ti > 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1–2.5}, {(La/Sm)N = 0.4–1.2} and {(Zr/Y)N = 0.7–2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation ( 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25° S–118° W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed by earlier (7–10 Ma) hotspot magmatic activity which also created Easter Island.  相似文献   
7.
New chemical analyses and a review of published data show that there is a compositional diversity between volcanics of basaltic composition found in the M.A.R. rift valley, M.A.R. transform faults and aseismic ridges. The basaltic rocks from the M.A.R. transform faults are less mafic (depleted in olivine content) than those from the M.A.R. rift valley. The transform fault basalts have a higher range of TiO2 content (1–4%), of Fe2O3+FeO content (8–14%) and a lower range of Cr content (50–500 ppm) and Ni content (50–300 ppm). The volcanics from aseismic ridges around the world are considered to be the more felsic types of the two provinces. They have a higher range of variation for their TiO2 and Fe2O3+FeO (1.6–5%; 9–15%; respectively) and a lower range of variability for their Cr and Ni (<250 and 100 ppm respectively) than both the M.A.R. rift valley and transform fault volcanics.It is suggested that transform faults have, by faulting, exposed more fractionated types of basaltic rocks (may be as intrusives) than the rift valley volcanics. While aseismic ridges have undergone a greater degree of differentiation than both transform faults and rift valley volcanics.Contribution n 475 du Département Scientifique, Centre Océanologique de Bretagne Contribution No. 3803 of Woods Hole Oceanographic Institution (USA)  相似文献   
8.
Dredged rocks from an area of about 15 km2 within the inner floor and on the adjacent walls of the Rift Valley were collected. Based on petrographic and chemical data, four types of basaltic rocks were recognized: (1) picritic basalts with olivine xenocrysts, TiO2 < 0.6%, K2O < 0.1%, (2) olivine basalts with olivine megacrysts, TiO2 = 0.8–1.5%,K2O = 0.1–0.2%, (3) highly phyric and moderately phyric plagioclase basalts with megacrystic plagioclase, TiO2 < 1.3%, K2O < 0.3%, and (4) pyroxene basalts with pyroxene > plagioclase, TiO2 = 0.8–1%,K2O = 0.2–0.4%. The Cr and Ni having high partition coefficients show different variation trends for each type of rock and their values decrease continuously as crystallization proceeds within each type of basalt. It is speculated that two different magmas have given rise to the above-mentioned rocks. One has yielded the picritic basalts and subsequently the olivine basalts after a separation of the olivine cumulates; the other gave rise to the plagioclase basalts.  相似文献   
9.
The volcanics from the Ninety East Ridge in the Indian Ocean consist of basalts and oceanic andesites. The basalts from the Ninety East Ridge differ from the Mid-Indian Oceanic Ridge basalts in their higher pyroxene content, their higher Fe2O3 + FeO content (>11%), higher TiO2 content (2–3%), and variable K2O content (0.2–1.5%). Volcanics from other aseismic ridges, i.e. the Cocos, the Iceland-Faeroe and the Walvis ridges, show a trend of differentiation which has progressed further than is commonly encountered on mid-oceanic ridge rocks. The Ninety East and the Iceland-Faeroe ridges contain mildly tholeiitic basalts and oceanic andesites while the Walvis and the Cocos Ridges consist of plagioclase-alkali basalts, trachybasalts and trachytes. The majority of basalts found on aseismic ridges have a higher total iron oxide content (>11%) and a more variable K2O (2–3%) and TiO2 (1.5–4%) content than mid-oceanic ridge basalts. The type of volcanism encountered on aseismic ridges is similar to that of the islands which are near or associated with the ridges.  相似文献   
10.
A substantial range of petrologic rock types has erupted on the accreting plate boundary near 21° N on the East Pacific Rise (EPR). Young olivine basalts have Fo89-86 phenocrysts, low bulk TiO2 (1.1–1.3%), Ba (7–10 ppm), and high Ni contents (>100 ppm). Older plagioclase-olivine-pyroxene (POP) basalts have Fo86-81 phenocrysts, high TiO2 (1.4–1.7%), Ba (9–40 ppm), and low Ni (<100 ppm). The youngest olivine basalts erupt immediately around a segmented axial fissure system. Progressively older, more fractionated POP basalts have spread farther from the same fissure system, producing a stratigraphically-controlled zonal pattern of basalt type distribution around the eruptive fissures. A topographic and morphologic en echelon displacement of the ridge axis fissure of 1.7 km to the NW near 20°54N offsets this zonal distribution pattern. Low pressure crystal fractionation of olivine, plagioclase, and clinopyroxene (251) from an olivine basalt parent would yield POP basalts of the observed Zr, Ti, Y, P and major element chemistry. However very incompatible elements Ba and K are too variably enriched in POP basalts for this model to be viable. Small, variable degrees of mantle partial melting is not a viable model either because of the substantial depletion of Ni which correlates with incompatible element enrichment and because of the precise low pressure cotectic character of POP basalts. The in situ fractionation model of Langmuir (1987) can explain these features. The relative abundance of fractionated lavas, their small-scale areal chemical zonation, the petrochemical correlation between types, and geophysical evidence point to the existence of shallow fractionating magma reservoirs beneath the EPR at 21° N.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号