首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   1篇
地质学   13篇
海洋学   2篇
  2016年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   6篇
  2006年   3篇
  2000年   1篇
  1995年   1篇
  1973年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
3.
Hekinian  R.  Juteau  T.  Gràcia  E.  Sichler  B.  Sichel  S.  Udintsev  G.  Apprioual  R.  Ligi  M. 《Marine Geophysical Researches》2000,21(6):529-560
The St. Paul F.Z. is a large structural domain made up of multiple transform faults interrupted by several Intra-Transform Ridge (ITR) spreading segments. Two regions were studied in details by submersible: (1) The ITR short (<20 km in length) segment near 0° 37N–25° 27W and 1° N–27° 42W and (2) The St. Peter and St. Paul's Rocks (SPPR) massif located at 29° 25W (¡3700 m depth). (1) The short ITR segments consist of a magma starved rift valley with recent volcanic activities at 4700 m depth. A geological profile made along the rift valley wall showed localized volcanics (basalts and dykes) which are believed to overlay and intrude the ultramafics. The geological setting and the high ultramafic/volcanic ratio suggest an extremely low magmatic supply and crustal-mantle uplift during lithospheric stretching and denudation. (2) The St. Peter and St. Paul's Rocks (SPPR) massif consists of a sigmoidal ridge within the active transform zone. The SPPR is divided into two different geological domains called the North and the South Ridges. The North Ridge consists of strongly tectonized fault scarps composed of banded and mylonitized peridotite, sporadic gabbros (3900–2500 m) and metabasalts (2700–1700 m). The South Ridge is less tectonized with undeformed, serpentinized spinel lherzolite (2000–1400 m) and basalts. Extensional motion and denudation accompanied by diapirism affected the South Ridge within a transform domain. Instead, the North Ridge was formed during an important strike-slip and faulting motion resulting in the uplifted portion of the St. Paul F.Z. transverse ridge. There is a regional compositional variation of the volcanics where E-MORBs and alkali basalts are produced on the SPPR massif and are comparable to the adjacent northern segments of the Mid-Atlantic Ridge. On the other hand, N and T- MORBs collected from the eastern part of the St. Paul F.Z. (25° 27W IRT) are similar to the volcanics from the southern segments of the MAR. The peridotites exposed in these provinces (SPPR and ITR) are similar in their REE and trace element distribution. Different degrees (3–15%) of partial melting of a mixed composite mantle consisting of spinel and amphibole bearing lherzolite veined with 5–40% clinopyroxenite gave rise to the observed MORBs and alkali basalts.  相似文献   
4.
5.
This work is devoted to the results of the joint Russian-German geodynamic research carried out in the Weddell Sea and West Antarctica during cruise ANT-XXII/3 of the R/V Polarstern in 2005. The study of rock samples collected from the sea floor showed that a heterogeneous structure of the Weddell Sea was formed by spatiotemporal combination of the destruction of continental crust, progressive thalassogenesis (oceanization-taphrogenesis), and rifting, as opposed to a spreading origin. High postconsolidation mobility during the destruction stage led to the areal dismembering and high permeability of the continental crust, as well as to tectonomagmatic activation. The main mechanism of reworking of the continental crust is recognized to be the magmatic replacement by basic-ultrabasic mantle material with formation of a secondary oceanic crust and preservation of relics of the continental crust. The Earth’s endogenous activity was driven by transmagmatic fluid flows, which ascended from the melted core and caused transformation of the Earth’s crust and mantle.  相似文献   
6.
7.
8.
9.
The main results of seismic investigations in the transition zone from the Asian continent to the Pacific Ocean and in several regions of the Pacific Ocean are reported briefly. One of the most surprising findings is the existence of a layer with a P-velocity of 9 km/sec only 12–15 km below the oceanic crust-mantle boundary. Some recommendations for future investigations are given.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号