首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
测绘学   4篇
大气科学   1篇
地球物理   1篇
地质学   28篇
海洋学   5篇
天文学   2篇
自然地理   1篇
  2020年   1篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2001年   2篇
  1989年   2篇
  1983年   1篇
排序方式: 共有42条查询结果,搜索用时 296 毫秒
1.
Interpretation of IRS LISS II and LISS III imagery has revealed the various landforms as well as land use/land cover features in a part of the Godavari delta coastal belt. A comparative analysis of geomorphological vs. land use/land cover maps suggested that the landforms exert a certain degree of control over human land use activities even in this monotonously plain area. Further, an analysis of the sequential imagery pertaining to 1992 and 2001 aimed at detecting the land use/land cover change has indicated that the aquaculture has phenomenally increased by 9,293.5 ha during the 9-year period. At the same time, the cropland which occupied about 29,104 ha in 1992 has been reduced to 19,153.9 ha by 2001 mainly due to the encroachment of aquaculture. Village level data on temporal variation in land use/land cover extracted through GIS analysis revealed that in 14 out of the total 39 villages in the area, the conversion of cropland into aquaculture ponds was more than 30% with the highest conversion rate of 89.8% in Gondi village. These fourteen villages, which are designated as ‘aquaculture hotspots’ are grouped into 4 priority classes based on the intensity of conversion.  相似文献   
2.
A study on two closed salt lake basins, Tal Chapar and Parihara in the eastern margin of the Thar Desert, Rajasthan, was carried out to unravel late Quaternary geomorphic evolution of these saline lakes. Both lakes are elliptical in shape bordered by stabilised dunes, and are oriented in a NE-SW direction, i.e., in the direction of the prevailing summer monsoon wind. Both lakes have been formed in the wind-shadow zones of isolated hills of Precambrian quartzite. Our study indicates that the late Quaternary sediments in the lakes began with the cyclic deposition of laminated fine silt layers (0.5 m thick), rich in organic matter, alternating with ripple cross-bedded sand layers (each ∼1.5–2 m thick). Sand layers that are moderately sorted are separated by laminated silt-clay layers with gypsum/calcite and this unit occurs in the upper most 4 m sequence in deeper sections. The presence of gypsum crystals within the laminated sediments suggests a high concentration of Ca in the inflowing water. At Parihara Lake the organic carbon-rich sediments at 95 cm depth was dated to 7,375 + 155/−150 year BP. At Tal Chapar radiocarbon dates of 7,190 + 155/−150 and 9,903 + 360/−350 was obtained from the sediments rich in organic carbon occurring at a depth of 1.35 m and 1.80 m, respectively. The study reveals strong hydrologic oscillations during the past ∼14,000 year BP (13,090 + 310/−300 year BP). Quaternary geomorphic processes, especially the strong aeolian processes during dry climatic phases, played a major role in the formation of the lake basins, as well as the fringing linear dunes. Geochemical and mineralogical analyses of the lacustrine sediments, supported by radiocarbon dates indicate the existence of an ephemeral lake earlier than ∼13,000 year BP as sediments began to be deposited in a lacustrine environment implying sustained runoff in the catchments. A freshwater lake formed between 9,000 year and 7,000 year BP. The lake dried periodically and this strong fluctuating regime continued until about ∼7,000 year BP. Mid-Holocene was wet and this was possibly due to higher winter rains A saline lake existed between 6,000 year and 1,300 year BP and finally present day semi arid conditions set in since 1,200 year BP. Remnants of a habitation site (hearth and charred bones) on stabilised dune at Devani near Tal Chapar were dated to 240 ± 120 year, while that at Gopalpura was dated to 335 ± 90 year. These historical sites on stabilised dunes were, according to the local accounts, settlements of people who used the lake brine for manufacturing salt.  相似文献   
3.
4.
5.
Geologic sequestration in deep unmineable coal seams and enhanced coalbed methane production is a promising choice, economically and environmentally, to reduce anthropogenic gases such as carbon dioxide in the atmosphere. Unmineable coal seams are typically known to adsorb large amounts of carbon dioxide in comparison to the sizeable amounts of sorbed methane, which raises the potential for large scale sequestration projects. During the process of sequestration, carbon dioxide is injected into the coalbed and desorbed methane is produced. The coal matrix is believed to shrink when a gas is desorbed and swell when a gas is sorbed, sometimes causing profound changes in the cleat porosity and permeability of the coal seam. These changes may have significant impact on the reservoir performance. Therefore, it is necessary to understand the combined influence of swelling and shrinkage, and geomechanical properties including elastic modulus, cleat porosity, and permeability of the reservoir.The present paper deals with the influence of swelling and shrinkage on the reservoir performance, and the geomechanical response of the reservoir system during the process of geologic sequestration of carbon dioxide and enhanced coalbed methane production in an actual field project located in northern New Mexico. A three-dimensional swelling and shrinkage model was developed and implemented into an existing reservoir model to understand the influence of geomechanical parameters, as well as swelling and shrinkage properties, on the reservoir performance. Numerical results obtained from the modified simulator were compared to available measured values from that site and previous studies. Results show that swelling and shrinkage, and the combination of geomechanical and operational parameters, have a significant influence on the performance of the reservoir system.  相似文献   
6.
Precipitation is the most discontinuous atmospheric parameter because of its temporal and spatial variability. Precipitation observations at automatic weather stations (AWSs) show different patterns over different time periods. This paper aims to reconstruct missing data by finding the time periods when precipitation patterns are similar, with a method called the intermittent sliding window period (ISWP) technique—a novel approach to reconstructing the majority of non-continuous missing real-time precipitation data. The ISWP technique is applied to a 1-yr precipitation dataset (January 2015 to January 2016), with a temporal resolution of 1 h, collected at 11 AWSs run by the Indian Meteorological Department in the capital region of Delhi. The acquired dataset has missing precipitation data amounting to 13.66%, of which 90.6% are reconstructed successfully. Furthermore, some traditional estimation algorithms are applied to the reconstructed dataset to estimate the remaining missing values on an hourly basis. The results show that the interpolation of the reconstructed dataset using the ISWP technique exhibits high quality compared with interpolation of the raw dataset. By adopting the ISWP technique, the root-mean-square errors (RMSEs) in the estimation of missing rainfall data—based on the arithmetic mean, multiple linear regression, linear regression, and moving average methods—are reduced by 4.2%, 55.47%, 19.44%, and 9.64%, respectively. However, adopting the ISWP technique with the inverse distance weighted method increases the RMSE by 0.07%, due to the fact that the reconstructed data add a more diverse relation to its neighboring AWSs.  相似文献   
7.
Photogeological studies of the area shows the presence of four major lithological groups as : 1. Precambrian basement made up of granitic gneisses and Charnockites, 2. The Utatur Group of rocks, 3. The Trichinopoly Group of rocks and 4. The Ariyalur Group of rocks. Some prominant lineaments roughly trending in NE-SW direction are seen. These lineaments represent the traces of the reactivated faults in the basemeht. The photogeological studies were supplemented by morphometric analyses. It is seen that the drainage in lower order basins is controlled by structure, i.e. by the strike of the rocks and faults in the basement. The higher order streams apparently follow the direction of regional gradient.  相似文献   
8.
An understanding of the fracture mechanics of geomaterials is important for the solution of many problems in geomechanics. One of the most important material properties involved in fracture mechanics is the fracture toughness, KIc. The short-rod test configuration proposed by Barker1 has significant potential for becoming a standard test for fracture toughness determination in geomechanics. The purpose of this brief is to examine the application potential of the short-rod test for geomechanics problems.  相似文献   
9.
In the present study, the lake floor sediments of the Karlad lake, located at higher elevation in Wayanad region of north Kerala, were analyzed for textural characteristics, organic matter, calcium carbonate, major oxides and trace elements. This study was carried out to infer the chemical composition, provenance and intensity of chemical weathering of the source rocks in the lake catchment area. Textural studies signify that lake floor sediments are predominantly as clays (38.75%) followed by sand (36.36%) and silt (25.19%) fractions. The C/N ratio of the lake sediments signify that the sediments are both autochthonous and allochthonous in origin. The major oxides average content reveals the order of abundance as follows; SiO2 > Al2O3 > Fe2O3 > TiO2 > MgO > CaO > K2O > P2O5 > Na2O > MnO. Moreover, the various weathering indices such as Chemical Index of Alteration (CIAAvg. 93.5%), PlagioclaseIndex of Alteration (PIA- Avg. 95.6%) and Chemical Index of Weathering (CIW- Avg. 95.76%) suggest an intense chemical weathering of the source area. The A-CN-K diagram is also corroborating the same. Various provenance discrimination diagrams reveal that the sediments are derived from the mafic source rocks.  相似文献   
10.
Intermontane basin sedimentation occurred during Pliocene-Pleistocene in the Karewa Basin which formed after the continent-continent collision resulting in the formation of Himalayan orogenic belt around Eocene. These are elongated, narrow, thrust bounded basins which have formed during the late stages of orogeny. Situated at a height of 1700–1800 m above sea level, the Karewa basin received sediments because of ponding of a pre-existing river system and the tectonic movements along the Great Himalayan Ranges in the north and the Pir-Panjal ranges in the south along active faults. About 1300 m thick sediments of largely fluvio-lacustrine, glacio-fluvio-lacustrine and eolian origin are exposed having evidences of neotectonically formed structural features such as folds and faults. Folds are more prominent in the Lower Karewa formation (Hirpur Formation) while faults (mostly normal faults) are abundant in the Upper Karewas (Nagum Formation). Drainage in the area varies from dendritic to anastomosing to parallel. Anastomosing drainage suggests sudden decrease in gradient while presence of linear features such as faults and ridges is evident by parallel drainage. Study of morphometric parameters such as stream length (Lsm) and stream length ratios (RL), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc), and elongation ratio (Re) also indicate intense tectonic activity in the recent past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号