首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   6篇
地质学   3篇
海洋学   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1989年   1篇
  1987年   3篇
排序方式: 共有11条查询结果,搜索用时 296 毫秒
1.
The Sagami trough is located at the particular plate margin where the Izu forearc is subducted underneath the Honshu forearc. At its southeastern end, the world's only known TTT-type triple junction (Boso triple junction) has developed. Several different kinds of basins occur in different segments along the Sagami trough and at the triple junction. The bathymetric, geologic, and geophysical data obtained during the Kaiko Project and from additional studies are summarized together with our onland studies. We suggest that the right-lateral oblique plate motion formed an eduction margin in the Sagami basin, while a normal subduction margin and an oblique subduction margin have been formed in the Middle Sagami trough basin. These tectonic phenomena resulted from the long-lasting compressional covergence between the Philippine Sea plate and Eurasian plate since the early or middle Miocene. The North basin on the northeasternmost margin of the Philippine Sea plate near the Boso triple junction has developed as a stretched basin due to the westward motion of the Philippine Sea plate with respect to the Eurasian plate.  相似文献   
2.
Abstract: Pyrite rich in Zn, up to 3.1 wt%, was found in the TAG active mound of the TAG hydrothermal field, the slow-spreading Mid-Atlantic Ridge at 26°08'N and 44°49'W. The Zn-rich pyrite is characterized by an optical homogeneity, a homogeneous distribution of Zn in the back-scattered electron images, both at a magnification of about 500, a negative correlation between Fe and Zn contents of the pyrite and a rather small unit cell edge (a0 = 5.4117 ± 0.0008Å), strongly indicating that the detected Zn is present in the pyrite in solid solution. Such Zn concentrations are observed exclusively in dendritic pyrite, suggesting that the Znrich pyrite grew from hydrothermal fluids of a high degree of supersaturation due to quenching on the seafloor.  相似文献   
3.
A huge hydrothermal field, named the "Hakurei Sulfide Deposit" (HSD) was discovered in the North Myojin Rift (NMR), Izu–Bonin Back-Arc Rift (BAR) during the 2003 survey cruise of R/V Hakurei-maru No.2 . This paper investigates the geotectonic features and the tectonic setting of ore deposits between the NMR and the Hokuroku Basin, which is representative of kuroko fields in Japan. The topographic features of the NMR and the Hokuroku Basin are similar. Both have a clear ring structure surrounded by faults and the east–west width is almost the same. Many kuroko deposits were formed on the extrusion centers of the five pre-mineral acidic volcanic complexes, located in a loop inside the Hokuroku Basin. In the case of the NMR, seven submarine volcanoes are also located in a loop, and the HSD formed inside the summit caldera of Bayonnaise Knoll, which is one of the seven volcanoes. These topographic similarities highlight that the NMR is a modern analog of the Hokuroku Basin. Identifying such similarities is extremely useful when prospecting kuroko deposits on land equivalents as well as on the other segments of the Izu–Bonin BAR. The probability of finding kuroko deposits on land is expected to increase when the following are identified: (i) location of back-arc rift and the volcanic front; (ii) direction of the arc–trench system and intra-rift faults (and/or fracture zone); (iii) position of submarine volcanoes surrounding a back-arc rift; and (iv) intersections of a caldera fault and intra-rift fault (and/or fracture zone) inside the summit caldera of submarine volcanoes. Within these aforementioned points a ring structure, acidic volcanic complexes that circle the circuit and submarine calderas along the volcanic front, are an important indication of submarine hydrothermal deposits.  相似文献   
4.
Leg 2 of the French-Japanese 1984 Kaiko cruise has surveyed the Suruga and the Sagami Troughs, which lie on both sides of the northwestward moving and colliding Izu-Bonin Ridge, the northernmost part of the Philippine Sea plate. The transition from the Nankai Trough to the Suruga Trough is characterized by northward decrease in width of the accretionary prism, in good agreement with the increasing obliquity between the through axis and the direction of the convergence, as the strike of the convergent boundary changes from ENE-NNE to south-north. South of the area, the southern margin of the Zenisu Ridge shows contractional deformations. This supports the interpretation made by the team of Leg 1 who studied the western extension of the area we studied, that it is an intra-oceanic thrusting of the ridge over the Shikoku Basin. In the Sagami Trough, where the relative motion is highly oblique to the plate boundary, active subduction is mostly confined in the east-west trending portions of the trough located south of the Boso Peninsula and along the lower Boso Canyon, near the TTT triple junction. In between, the present motion is mainly right-lateral along the northwest trending Boso escarpment. However, an inactive but recent (Pliocene to lower Pleistocene) accretionary prism exists south of the Boso escarpment, which suggests that the relative motion was more northerly than at present before about 1 Ma ago.  相似文献   
5.
Mikiya  Yamashita  Tetsuro  Tsuru  Narumi  Takahashi  Kaoru  Takizawa  Yoshiyuki  Kaneda  Kantaro  Fujioka  Keita  Koda 《Island Arc》2007,16(3):338-347
Abstract   The Parece Vela Basin (PVB), which is a currently inactive back-arc basin of the Philippine Sea Plate, was formed by separation between the Izu-Ogasawara Arc (IOA) and the Kyushu-Palau Ridge (KPR). Elucidating the marks of the past back-arc opening and rifting is important for investigation of its crustal structure. To image its fault configurations and crustal deformation, pre-stack depth migration to multichannel seismic reflection was applied and data obtained by the Japan Agency for Marine-Earth Science and Technology and Metal Mining Agency of Japan and Japan National Oil Corporation (Japan Oil, Gas and Metals National Corporation). Salient results for the pre-stack depth-migrated sections are: (i) deep reflectors exist around the eastern margin of KPR and at the western margin of IOA down to 8 km depth; and (ii) normal fault zones distributed at the eastern margin of the KPR (Fault zone A) and the western margin of the IOA (Fault zone B) have a total displacement of greater than 500 m associated with synrift sediments. Additional normal faults (Fault zone C) exist 20 km east of the Fault zone B. They are covered with sediment, which indicates deposition of recent volcanic products in the IOA. According to those results: (i) the fault displacement of more than 500 m with respect to initial rifting was approximately asymmetric at 25 Ma based on PSDM profiles; and (ii) the faults had reactivated after 23 Ma, based on the age of deformed sediments obtained from past ocean drillings. The age of the base sediments corresponds to those of spreading and rotation after rifting in the PVB. Fault zone C is covered with thick and not deformed volcanogenic sediments from the IOA, which suggests that the fault is inactive.  相似文献   
6.
A biological community was discovered in the Northern Okushiri Ridge, northeastern Japan Sea. The community was closely associated with sea-floor fissures, and presumed to be supported by methanotrophic and/or thiotrophic bacterial production. Sediments inside of and in the vicinity of the fissures were collected, and the short-chain (C9–20) sediment fatty acids were analyzed for amounts and compositions. The fatty acid compositions were compared with those from a known methane seep and a submarine volcano in the Sagami Bay, central Japan, and from a whale skeleton at the Torishima Seamount, northwestern Pacific Ocean. As a result, a close relationship between the sediments from the Northern Okushiri Ridge, the known methane-seep, and the whale skeleton was found. This finding represents the first discovery of methane seepage and associated biological communities in the Japan Sea. This also supports the hypothesis that the eastern margin of the northern Japan Sea is at the early stage of new subduction.  相似文献   
7.
A whale skeleton was discovered on the flat-topped summit of the Torishima Seamount, 4037 m deep, northwest Pacific Ocean, during a dive by the submersibleShinkai 6500 in 1992. The skeleton was encrusted with mytilid mussels and harbored benthic animals such as galatheid crabs, echinoderms, sea anemones, and unidentifiable tube worms. The whale skeleton was revisited in 1993. Sediment samples were collected to outline the chemical-microbial distribution in the sediment associated with the skeleton. In the sediment, there was a gradient of sulfide concentration with the peak of 20 n moles per gram sediment just beneath a bone. Corresponding gradients were observed in thiosulfate-oxidizing enzyme activity, bacterial colony counts and fatty acid amounts. Direct analysis of the sediment fatty acid composition suggested the occurrence of methane-oxidizing bacteria and sulfur-reducing bacteria in close association with the whale skeleton. These observations imply that the methane and sulfides were formed during the saprogenic process and utilized for the chemosynthetic bacterial production to feed the whale skeleton-animal community.  相似文献   
8.
Morphology and tectonics of the Yap Trench   总被引:5,自引:0,他引:5  
We conducted swath bathymetry and gravity surveys the whole-length of the Yap Trench, lying on the southeastern boundary of the Philippine Sea Plate. These surveys provided a detailed morphology and substantial insight into the tectonics of this area subsequent the Caroline Ridge colliding with this trench. Horst and graben structures and other indications of normal faulting were observed in the sea-ward trench seafloor, suggesting bending of the subducting oceanic plate. Major two slope breaks were commonly observed in the arc-ward trench slope. The origin of these slope breaks is thought to be thrust faults and lithological boundaries. No flat lying layered sediments were found in the trench axis. These morphological characteristics suggest that the trench is tectonically active and that subduction is presently occurring. Negative peaks of Bouguer anomalies were observed over the arc-ward trench slope. This indicates that the crust is thickest beneath the arc-ward trench slope because the crustal layers on the convergent two plates overlap. Bouguer gravity anomalies over the northern portion of the Yap Arc are positive. These gravity signals show that the Yap Arc is uplifted by dynamic force, even though dense crustal layers underlie the arc. This overlying high density arc possibly forces the trench to have great water depths of nearly 9000 m. We propose a tectonic evolution of the trench. Subduction along the Yap Trench has continued with very slow rates of convergence, although the cessation of volcanism at the Yap Arc was contemporaneous with collision of the Caroline Ridge. The Yap Trench migrated westward with respect to the Philippine Sea Plate after collision, then consumption of the volcanic arc crust occurred, caused by tectonic erosion, and the distance between the arc and the trench consequently narrowed. Lower crustal sections of the Philippine Sea Plate were exposed on the arc-ward trench slope by overthrusting. Intense shearing caused deformation of the accumulated rocks, resulting in their metamorphism in the Yap Arc.  相似文献   
9.
Leg 2 of the French-Japanese 1984 Kaiko cruise has surveyed the trench triple junction off central Japan, where the Japan, Izu-Bonin and Sagami Trenches intersect. The Izu-Bonin Trench is deeper than the Japan Trench and filled by a thick turbiditic series. Its anomalous depth is explained by the westward retreat of the edge of the northwestward moving Philippine Sea plate. On the contrary to what happens in the Japan Trench, horst and graben structures of the Pacific plate obliquely enters the Izu-Bonin Trench, suggesting that the actual boundary between these two trenches is located to the north of the triple junction. The inner wall of the Izu-Bonin Trench is characterized in the triple junction area by a series of slope basins whose occurrence is related to the dynamics of this area. The northernmost basin is overthrust by the edge of the fore-arc area of the Northeast Japan plate. The plate boundary is hardly discernible further east, which makes it impossible to locate precisely the triple junction itself. These features suggest that large intra-plate deformation occurs there due to the interaction of the plates involved in the triple junction and the weak mechanical strength of the wedge-shaped margin of the overriding plates.  相似文献   
10.
Kantaro  Fujioka  Wataru  Tokunaga  Hisayoshi  Yokose  Junzo  Kasahara  Toshinori  Sato  Ryo  Miura  Teruaki  Ishii 《Island Arc》2005,14(4):616-622
Abstract   The Hahajima Seamount, located at the junction between the Izu–Bonin and Mariana forearc slopes, is a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, northeast–southwest and northwest–southeast. These lineaments are of faults based on the topographic cross-sections and a 3-D view (whale's eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin, whereas the latter is parallel to the nearby transform fault on the subducting Pacific Plate. The rocks constituting the seamount are ultramafic rocks (mostly harzburgite), boninite, basalt, andesite, gabbro, breccia and sedimentary rocks, which characterize an island arc and an ocean basin. Gravity measurement and seismic reflection survey offer neither a definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. A northwest–southeast-trending fault and small-scale serpentine flows were observed during submersible dives at the Hahajima Seamount. The rectangular shape, size of the seamount, various kinds of rocks and geophysical measurements strongly suggest that the Hahajima Seamount is not a simple serpentine seamount controlled by various tectonic movements, as previously believed, but a tectonic block.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号