首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1868篇
  免费   66篇
  国内免费   6篇
测绘学   57篇
大气科学   162篇
地球物理   469篇
地质学   506篇
海洋学   204篇
天文学   354篇
自然地理   188篇
  2021年   18篇
  2020年   21篇
  2019年   21篇
  2018年   22篇
  2017年   28篇
  2016年   47篇
  2015年   36篇
  2014年   46篇
  2013年   91篇
  2012年   47篇
  2011年   100篇
  2010年   67篇
  2009年   92篇
  2008年   73篇
  2007年   75篇
  2006年   96篇
  2005年   72篇
  2004年   81篇
  2003年   72篇
  2002年   66篇
  2001年   67篇
  2000年   47篇
  1999年   36篇
  1998年   41篇
  1997年   33篇
  1996年   28篇
  1995年   28篇
  1994年   35篇
  1993年   26篇
  1992年   31篇
  1991年   23篇
  1990年   27篇
  1989年   15篇
  1988年   21篇
  1987年   24篇
  1986年   17篇
  1985年   33篇
  1984年   27篇
  1983年   27篇
  1982年   22篇
  1981年   22篇
  1980年   13篇
  1979年   22篇
  1978年   13篇
  1977年   16篇
  1976年   8篇
  1975年   9篇
  1974年   8篇
  1973年   9篇
  1970年   6篇
排序方式: 共有1940条查询结果,搜索用时 15 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
Using two dimensional continuous wavelet transforms, a novel method for identification of mesoscale eddies is presented to facilitate extraction of characteristics for area, amplitude, type, and location from maps of sea level anomalies. In comparison with the previously established growing method for eddy identification, it is found that the wavelet method identifies more than twice the number of eddies and is particularly better at resolving small eddies down to the 0.25 degree resolution of the data. Such research into eddy identification and tracking is significant to the assessment of eddies with potential to impact on coastlines of small islands. The method is applied to the identification of eddies on tracks towards islands of the Eastern Caribbean over 23?years. Spatial and temporal variation in rate of occurrence and magnitude is established. For Barbados there is an average of 9 anticyclonic incidents a year with maximum amplitude of typically 0.22?m in the dry seasons and 0.16?m in the wet seasons. Seasonal variation is reversed for the other islands with twice the number of anticyclonic incidents having maximum amplitudes of about 0.20?m annually.  相似文献   
3.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
4.
5.
6.
7.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   
8.
Previous research on the cetacean auditory system has consisted mostly of behavioral studies on a limited number of species. Little quantitative physiologic data exists on cetacean hearing. The frequency range of hearing varies greatly across different mammalian species. Differences among species correlate with differences in the middle-ear transfer function. Middle-ear transfer functions depend on the mechanical stiffness of the middle ear and the cochlear input impedance. The purpose of this study was to measure the middle-ear stiffness for the bottlenose dolphin (Tursiops truncatus), a species specialized for underwater high-frequency hearing and echolocation. Middle-ear stiffness was measured with a force probe that applied a known displacement to the stapes and measured the restoring force. The average middle-ear stiffness in ten dolphin ears was 1.37 N//spl mu/m, which is considerably higher than that reported for most terrestrial mammals. The relationship between middle-ear stiffness and low-frequency hearing cutoff in Tursiops was shown to be comparable to that of terrestrial mammals.  相似文献   
9.
10.
The discovery of binaries among the population of transneptunian objects isa landmark advance in the study of this remote region of the solar system.Determination of binary orbits will enable direct determination of systemmasses, fundamental for determination of density, internal structure, and bulkcomposition. The mere existence of binaries with the observed separations andapparent masses constrains models of planetary formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号