首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
大气科学   9篇
地球物理   1篇
海洋学   4篇
  2013年   10篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1986年   1篇
排序方式: 共有14条查询结果,搜索用时 437 毫秒
1.
Ocean Waves: Half-a-Century of Discovery   总被引:1,自引:0,他引:1  
While the nature of most ocean waves has long been known and their basic physics understood since the nineteenth century, intense study of ocean waves during the second half of the twentieth century has taken the subject from the realm of mathematical exercises to that of practical engineering. Modern understanding of the generation, propagation and interactions of ocean waves with each other and with oceanic features has advanced to a quantitative level offering predictive capacity. This paper presents a brief qualitative review of advances in knowledge of sound waves, wind waves, tsunamis, tides, internal waves and long-period vorticity waves. The review is aimed at non-specialists who may benefit from an overview of the current state of the subject and access to a bibliography of general-interest references. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Abstract

The presence and the basic features of the forced fortnightly wave observed in some shallow rivers are explained through scaling arguments which show that this wave is generated by the fortnightly modulation of the frictional forces due to the variation in tidal velocities. Comparison of the results with sea‐level records from a shallow reach of the St Lawrence River shows reasonable agreement between data and theory.  相似文献   
3.
Abstract

A westward current flows along the northern side of Lancaster Sound and an eastward current flows along the southern side. A cross‐channel flow is commonly observed to link them near the eastern entrance of Lancaster Sound; this flow is modelled assuming inviscid flow and conservation of potential vorticity. It is shown that the westward decrease in depth is sufficient to cause a cross‐channel flow that couples the inflow to the outflow. The modelled cross‐channel flow takes place at a distance inside the entrance that is less than that observed for the surface current. Obviously stratification reduces the coupling of the surface current to the bathymetry. A more realistic result is obtained with the barotropic model if the bottom slope is halved.

An inviscid mean barotropic flow out of the channel is also modelled and found to be concentrated on the southern bank in order to conserve potential vorticity. It seems that barotropic instability and friction would limit the narrowing of the flow.  相似文献   
4.
Wave-tank measurements show that some wind waves travel at a speed that corresponds more closely to the spectral peak frequency than to the linear dispersion relation. However, Bragg echoes sampled and averaged in space and time by HF radars tend to obey the linear dispersion relation. Resolution of the dilemma will require new measurements with incisive attention to their meaning.  相似文献   
5.
Abstract

We develop a wind‐driven depth‐averaged model of the circulation on the continental shelf around the Queen Charlotte Islands. The model captures a major feature of the winter current‐meter observations: a flow in Moresby Trough against the direction of the prevailing winds. Moresby Trough is a steep submarine canyon cutting across the shelf from the Pacific Ocean to the mainland. The flow patterns revealed by simulated drifters lead to four generalizations about the depth‐averaged, wind‐driven flow: (1) the flow is subject to strong topographic steering, (2) the exchange between Queen Charlotte Sound and the Pacific Ocean is limited to small regions near Cape St James and Cape Scott, (3) the exchange between Queen Charlotte Sound and Hecate Strait is controlled by Moresby Trough, and (4) the observed outflows past Cape St James are not explained by the dynamics of this model.  相似文献   
6.
An estimate of the energy content of near‐surface internal waves in the Strait of Georgia is obtained from a combination of aerial photographs and in‐situ measurements. The role of these waves in the tidal energy budget and in the mixing processes in the Strait is discussed.  相似文献   
7.
Abstract

We have studied deep‐water replacement processes in the Strait of Georgia using data from two different observational programs. From the monthly hydrographic data of Crean and Ages (1971) we have recognized the propagation of cold, brackish and well oxygenated waters northwards from Boundary Passage at depths between 75 and 200 m. We found a significant correlation over the years 1967–78 between surface cooling and temperature drops at those depths some months later. Measurements at an array of moorings in the central Strait of Georgia (Stacey et al., 1987) revealed the presence during summer months of currents concentrated near the bottom and varying with fortnightly and monthly periods. We have interpreted this phenomenon in terms of gravity currents originating from Boundary Passage during periods of neap tides and introducing at depth salty waters from the Strait of Juan de Fuca. Our analysis confirms in part the validity of the deep‐water replacement mechanisms advanced by Waldichuk; however, we find that wintertime replacement does not usually reach bottom while summertime penetration of waters from the Strait of Juan de Fuca clearly does. Because of the important role played by tidal mixing, monthly sampling is inadequate to resolve and understand the deep‐water replacement processes.  相似文献   
8.
Abstract

Current meters and a thermistor chain deployed in the proximity of a drill‐ship over the continental shelf off Baffin Island revealed the presence of large amplitude internal waves. This paper reviews the properties of the internal waves, observed to propagate away from the coast and to coincide with the local low water phase of the tide at the drill‐ship. The observations are considered in terms of internal solitary wave models. A detailed comparison is presented of wave properties with a long‐wave model incorporating continuous stratification and shear.  相似文献   
9.
Abstract

We analyse the trajectories of 24 deep‐drogued, satellite‐tracked drifters launched between 50 and 52°N in the northeast Pacific during June and October 1987. Three aspects of the observed motions at the drogue depths of 100 to 120 m are studied: (i) the spatial structure of the mean and variance velocity fields; (ii) the dispersion and eddy diffusion characteristics of the fluctuating motions; and (iii) the properties of selected mesoscale eddies.

The mean Lagrangian velocity field is consistent with the mean flow pattern derived from the historical dynamic height topography. Fluctuating motions within the region are dominated by mesoscale eddies and meanders. Several instances of persistent O(100 days) westward flowing countercurrents were also observed. Based on the Lagrangian integral time‐ and length scales, drifter motions become decorrelated within a period of 10 days and a separation of 100 km. The mean zonal and meridional integral time‐scales of 4.5 and 3.6 days, respectively, are nearly identical with those obtained by Krauss and Böning (1987) from deep‐drogued drifter tracks in the North Atlantic. Because of the relatively small (<100 cm2 s?2) kinetic energy values in the northeast Pacific, the corresponding mean Lagrangian length scales of 29.4 and 29.9 km are roughly half those for the Atlantic.

The observed drifter dispersion is generally consistent with Taylor's (1921) theory for single‐particle dispersion in homogeneous isotropic turbulence. Estimates obtained using 476 pseudo‐drifter tracks generated from the original records indicate that the dispersion increases linearly with time, t, within the first 3 to 5 days of launch and subsequently increases as t1/2 (the random‐walk regime) within 10 days of launch. The respective peak zonal and meridional eddy diffusion coefficients of 4.1 × and 3.8 × 107 cm2 s?1 are reached within 30 days of deployment. Similar estimates for the peak eddy diffusivities are obtained using dispersion curves for sets of 4 drifters launched at the same location during the June and October deployments. The dispersion of these clusters followed an exponential rather than a t1/2 dependence over the first 70 days after release.

Eddies are predominantly clockwise rotary and are characterized by radii of 26 ± 16 km, periods of rotation of 16.0 ± 5.2 days, and azimuthal current speeds of 12.7 ± 8.6 cm s?1. One eddy was tracked for over 10 months. Oceanographic data collected during the October deployment period showed the eddies have vertical extents of 500 to 700 m and are linked to isotherm depressions of over 100 m in the main pycnocline. All eddies in the bifurcation zone propagate to the west at roughly 1.5 ± 0.4 cm s?1 counter to the prevailing mean flow and winds. These speeds are consistent with the westward phase speeds of first mode baroclinic planetary (Rossby) waves.  相似文献   
10.
Abstract

It is shown, through calculation and physical arguments, that in a smoothly stratified fluid thermal diffusion plays a damping role comparable to that of viscosity only in the interior of the fluid, and not in the boundary layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号