首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
地球物理   6篇
地质学   2篇
海洋学   13篇
自然地理   6篇
  2017年   1篇
  2009年   1篇
  2006年   2篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1997年   4篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
  1981年   2篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Geophysical data from 900 km of the Southwest Indian Ridge are used todescribe the pattern of evolution of the plate boundary between 61° Eand 70° E over the past 20 million years. The SWIR is anobliquely-opening, ultra slow-spreading axis, and east of61° E comprises a series of ridge sections, each about 100–120 kmin length. The orientation of these sections varies fromsub-orthogonal to oblique to the approximately N–S spreadingdirection. In general, the suborthogonal sections are shallower, commonlysubdivided into an array of discrete axial segments, and carry recognisablecentral magnetic anomalies. The majority of the oblique sections are single,continuous rifts without continuous axial magnetic signatures.Morphotectonics of the Southwest Indian Ridge crust have not previously beenwell constrained off-axis, and we here present sidescan sonar andswath bathymetric data up to 100 km from the ridge to demonstrate the complexities of its spatial and temporal evolution.A model is proposed that the segmentation style correlates with analong-axis variation between: (a) relatively thick crustal sections which overlie mantle sections with higher magmatic supply created in orthogonally-spreading segments and (b) those oblique sections associated with cooler, magmatically-starved mantle and thinner crust. These latter sections are formed at broad offset zones in theplate boundary, more precisely defined on faster-spreading ridges asnontransform discontinuities. The nonsystematic pattern of crustalconstruction, extensional basin formation and the absence of extension-parallel traces of discontinuities off-axis suggest that the oblique spreading sections are not fixed in space or time.  相似文献   
2.
This paper presents seismic reflection and refraction data from the Mozambique Channel, collected between 1971 and 1973. A deep sedimentary basin (up to 5 km of sediments) opens southwards to the Mozambique Basin, and is bounded to the east by the Davie Ridge and beyond by the marginal plateau of Malagasy. A continuous reflector (C), possibly of Cretaceous age, is identified between layers having seismic interval velocities of 2.4–2.8 km/s and 3.1–3.4 km/s. The deepest sediments have velocities of 4.5–4.9 km/s and overlie a layer with velocity 5.5 km/s, which may be volcanic in the north-east of the Channel.The crust occupying most of the Channel is probably pre-Cretaceous in age, and may be largely continental in nature. This is supported by subdued magnetic anomalies and the possibility of a continuous Karroo sedimentary section across the northern Channel. The oceanic crust of the Mozambique Basin may extend as far north as 24°S, into the western Channel only. The problem of the origin of the Mozambique Channel remains unresolved, although a long sedimentary history indicates that Malagasy may have separated from Mainland Africa prior to Karroo times. The Davie Ridge may possibly represent a relict strike-slip fault, which permitted movement along a north-south line.  相似文献   
3.
The analysis of multibeam bathymetric data of the Southwest Indian Ridge(SWIR) domain between the triple junction traces from 68° E to theRodrigues Triple Junction (RTJ; 70° E) reveals the evolution of thisridge since magnetic anomaly 4 (8 Ma). Image processing has been used toshow that the horizontal component of strain due to a network of normal stepfaults increases dramatically between 69°30 E and the RTJ. Thisarea close to the RTJ is characterized by a deep graben at the foot of thetriple junction trace on the African plate and by a narrow fault-boundedridge that joins an offset of the trace on the Antarctic plate. In thatarea, spreading is primarily amagmatic and dominated by tectonic extensionprocesses. To the west of 69°30 E, some lobate bathymetricfeatures atop of a large topographic high suggest volcanic constructions.Between 68°10 E and 69°25 E the southern flank of theSWIR domain is wider than the northern one and is characterized by a series of 7 en echelon bathymetric highs similar in size,shape and orientation to the one centred at 69°30E near the present-day triple junction. Their en echelon organization along the triple junction trace on the Antarctic plate and the typical lack of conjugated parts on the northern flank show that these bathymetric highs have been shifted to the south by successive northward relocalisations of the SWIR rifting zone. This evolution results in the asymmetric spreading of the SWIR in the survey area. The off-axis bathymetric highs connect to the offsets of the triple junction trace on the Antarctic plate when the Southeast Indian Ridges lightly lengthenstoward the northwest and the triple junction is relocated to the north. We propose that the SWIR lengthens toward the northeast with two propagation modes: 1) a continuous and progressive propagation with distributed deformation in preexisting crust of the Central Indian Ridge, 2) a discontinuous propagation with focusing of the deformation in a rift zone when the triple junction migrates rapidly to the north. The modes of propagation of the SWIR are related to different localisation and distribution of strain which are in turn controlled by changes of the triple junction configurations due to propagation, recession or a symmetric spreading on the Central and Southeast Indian Ridges.  相似文献   
4.
5.
The fit between calculated and observed magnetic anomalies from slow-spreading centers is improved when allowing for a transition zone between two inversely magnetized blocks. In this paper it is shown that these models are very easily computed by choosing a fictitious spreading rate which is slower than the real spreading rate and by changing the distance scale appropriately. With these slow fictitious spreading rates, the models are very sensitive to the relative position of the successive inversions and could be used to adjust these positions in the magnetic time scales.  相似文献   
6.
7.
Magnetic data were collected during the Wilkes (1973) and Seacarib II (1987) cruises to the Cayman trough. A new interpretation of magnetic data is carried out. An isochron pattern is drawn up from our anomaly identifications. An early Eocene age (49 Ma, Ypresian) for Cayman trough opening is proposed instead of the late Oligocene or middle Eocene ages suggested by previous studies. Our plate tectonic reconstruction is simpler and fits the on-land geology (Jamaica and Cuba) and the tectonics. Our reconstruction shows a southward propagation of the spreading centre between magnetic anomalies 8 and 6 (26 and 20 Ma). The trough width increases by 30 km in this period. The southward propagation of the Cayman spreading centre from the Middle Oligocene to the Early Miocene induced the development of the restraining bend of the Swan Islands, the formation of a 1 km high scarp on the eastern trace of the Cayman trough transform fault (Walton fault) and the formation of a pull-apart basin (Hendrix pull-apart). Magnetic anomalies and magnetization maps give information about the deformation and the rocks. The proposed evolutionary model of the Cayman trough from the inception of seafloor spreading to the present configuration is presented in relation to the tectonic escape of the northern boundary of the Caribbean plate from the Maastrichtian to the Present.  相似文献   
8.
The junction between oceanic crust generated, within the Antarctic plate, at the Southeast Indian Ridge and the Southwest Indian Ridge has been studied using a SEABEAM swathe bathymetry mapping system and other geophysical techniques between the Indian Ocean Triple Junction (approximately 25°S, 70° E), and a point some 500 km to the southwest (at 28°25 S, 66°35 E). The morphotectonic boundary which marks this trace of the ridge-ridge-ridge triple junction is complex and varies with age. Recent theories proposing a cyclicity of volcanic and tectonic processes at this mode of triple junctions appear to be supported by a series of regularly spaced, en echelon escarpments facing the slowly spreading (0.6 to 0.8 cm a-1, half rate) Southwest Indian Ridge axis. The en echelon escarpments intersect at approximately right angles with the regularly spaced oceanic spreading fabric formed on the Antarctic plate at the Southeast Indian Ridge and together locally flank uplifted northward-pointing corner sections of ocean floor. The origins for the localised elevations are unclear, but may relate to intermittent and/or alternating rifting and volcanic episodes. Variations of degree of asymmetry and/or obliquity in spreading on the Central Indian Ridge and the Southwest Indian Ridge are suggested to explain detailed structural changes along the triple junction trace. It is suggested that discontinuities of the trace may be related to an intermittent development of new spreading centres beneath the most easterly part of the Southwest Indian Ridge, coupled with a more continuous process beneath the faster spreading Central Indian Ridge (2 to 2.5 cm a-1) and the Southeast Indian Ridge (2.5 to 3 cm a-1). A detailed history of triple junction evolution may be thus inferred from basic morphological and structural mapping along the three triple junction traces.  相似文献   
9.
10.
The Easter (Rapanui) microplate is a case example of a large dual spreading center system in a region where the fastest seafloor spreading on Earth is occurring today. Recent theoretical models of the tectonic evolution of dual spreading center systems have explored the effects of shear and rigid rotation on the boundaries and internal structure of microplates but the models must be critically constrained by improved relative motion and structural fabric data sets.During the January 1987 Rapanui expedition on the N/O “Jean Charcot” we conducted a Sea Beam/magnetics/ gravity survey of a portion of the microplate boundaries. The method that was used was to fully map selected portions of the boundaries in order to establish precise structural relationships. The northern terminus of the East Rift or eastern boundary of the microplate is expressed as a series of parallel NW-SE trending valleys including what appears to be, with 5890 m depth, the deepest active rift axis mapped in the Pacific today (Pito Rift).The northern end of the Pito Rift merges with an E-W to 083° narrow band of linear faults interpreted to be a transform fault between the Nazca and Easter (Rapanui) plates.The northern triple junction between the Easter (Rapanui), Nazca and Pacific plates is a RFF type with the two transform faults colinear along an approximately E-W direction.The southwestern boundary of the Easter (Rapanui) microplate is marked by a series of en-echelon offsets, outlined by depressions, which merge into an approximately E-W zone where shear must be predominant.The southern triple junction is a RRF junction with an overlapping ridge system.The structural data acquired during the survey provide strong constraints for kinematic models of the microplate. The structural data need to be combined with crustal age determinations in order to derive a model for the evolution of the microplate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号