首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   2篇
海洋学   3篇
  2008年   1篇
  2005年   1篇
  2000年   1篇
  1998年   1篇
  1988年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Hekinian  R.  Juteau  T.  Gràcia  E.  Sichler  B.  Sichel  S.  Udintsev  G.  Apprioual  R.  Ligi  M. 《Marine Geophysical Researches》2000,21(6):529-560
The St. Paul F.Z. is a large structural domain made up of multiple transform faults interrupted by several Intra-Transform Ridge (ITR) spreading segments. Two regions were studied in details by submersible: (1) The ITR short (<20 km in length) segment near 0° 37N–25° 27W and 1° N–27° 42W and (2) The St. Peter and St. Paul's Rocks (SPPR) massif located at 29° 25W (¡3700 m depth). (1) The short ITR segments consist of a magma starved rift valley with recent volcanic activities at 4700 m depth. A geological profile made along the rift valley wall showed localized volcanics (basalts and dykes) which are believed to overlay and intrude the ultramafics. The geological setting and the high ultramafic/volcanic ratio suggest an extremely low magmatic supply and crustal-mantle uplift during lithospheric stretching and denudation. (2) The St. Peter and St. Paul's Rocks (SPPR) massif consists of a sigmoidal ridge within the active transform zone. The SPPR is divided into two different geological domains called the North and the South Ridges. The North Ridge consists of strongly tectonized fault scarps composed of banded and mylonitized peridotite, sporadic gabbros (3900–2500 m) and metabasalts (2700–1700 m). The South Ridge is less tectonized with undeformed, serpentinized spinel lherzolite (2000–1400 m) and basalts. Extensional motion and denudation accompanied by diapirism affected the South Ridge within a transform domain. Instead, the North Ridge was formed during an important strike-slip and faulting motion resulting in the uplifted portion of the St. Paul F.Z. transverse ridge. There is a regional compositional variation of the volcanics where E-MORBs and alkali basalts are produced on the SPPR massif and are comparable to the adjacent northern segments of the Mid-Atlantic Ridge. On the other hand, N and T- MORBs collected from the eastern part of the St. Paul F.Z. (25° 27W IRT) are similar to the volcanics from the southern segments of the MAR. The peridotites exposed in these provinces (SPPR and ITR) are similar in their REE and trace element distribution. Different degrees (3–15%) of partial melting of a mixed composite mantle consisting of spinel and amphibole bearing lherzolite veined with 5–40% clinopyroxenite gave rise to the observed MORBs and alkali basalts.  相似文献   
2.
The results of 26 dives with the diving saucer Cyana in the Gulf of Tadjoura and Ghoubbet al Kharab (Republic of Djibouti) are presented. One can demonstrate that the sites of recent volcanism, tectonics and hydrothermal activity within the axial part of the Gulf of Tadjoura coincide with topographic highs trending at a high angle (azimuth 135°) with respect to the average trend of the axial trough of the Gulf (azimuth 080°). The highs owe their relief to both volcanism and normal faulting along a trend of 130–140°. Recent faulting on the bounding walls of the axial trough is also found along a trend of 130–140° where the faults interfere with another set of apparently older faults trending 070° parallel to the axial trough. Spacing between the active zones of the Gulf is regular and about 30 km. No evidence for transform faulting has been found, in contradiction to all previous kinematic models of the Gulf of Tadjoura. There is evidence that the presently active phase of opening associated with 130–140° faults is less than 0.7 my old and that there was an older phase associated with 070°–080° faults creating the main trough of the Gulf. The basaltic lavas created during the two phases have evolved from transitional to tholeiitic.  相似文献   
3.
The direction of convergence between the Rivera and North American plates becomes progressively more oblique (in a counter-clockwise sense as measured relative to the trench-normal direction) northwestward along the Jalisco subduction zone. By analogy to other subduction zones, the forces resulting from this distribution of convergence directions are expected to produce a NW moving, fore-arc sliver and a NW–SE stretching of the fore-arc area. Also, a series of roughly arc parallel strike-slip faults may form in the fore-arc area, both onshore and offshore, as is observed in the Aleutian arc.In the Jalisco subduction zone, the Jalisco block has been proposed to represent such a fore-arc sliver. However, this proposal has encountered one major problem. Namely, right-lateral strike-slip faulting within the fore-arc sliver, and between the fore-arc sliver and the North American plate, should be observed. However, evidence for the expected right-lateral strike-slip faulting is sparse. Some evidence for right-lateral strike-slip faulting along the Jalisco block–North American plate boundary (the Tepic–Zacoalco rift system) has been reported, although some disagreement exists. Right-lateral strike-slip faulting has also been reported within the interior of the Jalisco block and in the southern Colima rift, which forms the SE boundary of the Jalisco block.Threefold, multi-channel seismic reflection data were collected in the offshore area of the Jalisco subduction zone off Manzanillo in April 2002 during the FAMEX campaign of the N/O L'Atalante. These data provide additional evidence for recent strike-slip motion within the fore-arc region of the Jalisco subduction zone. This faulting offsets right-laterally a prominent horst block within the southern Colima rift, from which we conclude that the sense of motion along the faulting is dextral. These data also provide additional evidence for recent subsidence within the area offshore of Manzanillo, as has been proposed.  相似文献   
4.
In August–September of 1995, 20 Nautile dives and detailed magnetic surveys (spaced every 1.8 km) were undertaken on two segments of the Mid-Atlantic Ridge between the Oceanographer and Hayes fractures zones. These two segments are only 65 km apart and show strong morphology and gravity contrasts. OH1 is shallower and has a large mantle Bouguer anomaly (MBA) bull's eye, whereas OH3 is deeper and has a smaller MBA bull's eye.Thirteen dives were devoted to segment OH1. The Median Ridge (MR) located on the central high (1700 m deep) is topped by 100 to 300 m high circular volcanoes. The volcanics consists mainly of porphyritic and/or vesicular pillows and volcaniclastics. The NVZ (2200 m deep), located in the valley floor east of the MR, consists of near aphyric fluid lava flows. A chain of off-axis volcanoes, displaying a magnetic continuity with surroundings, extends on both sides of the axis. Three volcanoes on the east side and one on the west side of the axis were explored and sampled by submersible. The off-axis increase of weathering, Fe-Mn coating and magnetic signature suggest that the volcanoes were built at or near the ridge axis. The spacing of NS elongated hills bearing circular volcanoes and separated large magnetic signature (2 to 4 km) depressions suggests that several similar volcanic events occured during the past 2 Ma. The last 1 Ma episode involves (1) the construction of an axial ridge (MR) by fissure eruptions and the formation of circular summit volcanoes by focused volcanism, and (2) the extrusion of fluid magma in the depressions formed by further fissuring and faulting of the MR.  相似文献   
5.
To better understand the recent motion of the Pacific plate relative to the Rivera plate and to better define the limitations of the existing Rivera–Pacific plate motion models for accurately predicting this motion, total-field magnetic data, multibeam bathymetric data and sidescan sonar images were collected during the BART and FAMEX campaigns of the N/O L'Atalante conducted in April and May 2002 in the area surrounding the Moctezuma Spreading Segment of the East Pacific Rise, located offshore of Manzanillo, Mexico, at 106°16′W, between 17.8°N and 18.5°N. Among the main results are: (1) the principle transform displacement zone of the Rivera Transform is narrow and well defined east of 107o15′W and these azimuths should be used preferentially when deriving new plate motion models, and (2) spreading rates along the Moctezuma Spreading Segment should not be used in plate motion studies as either seafloor spreading has been accommodated at more than one location since the initiation of seafloor spreading in the area of the Moctezuma Spreading Segment, or this spreading center is not a Rivera–Pacific plate boundary as has been previously assumed. Comparison of observed transform azimuths with those predicted by the best-fit poles of six previous models of Rivera–Pacific relative motion indicate that, in the study area, a significant systematic bias is present in the predictions of Rivera–Pacific motion. Although the exact source of this bias remains unclear, this bias indicates the need to derive a new Rivera–Pacific relative plate motion model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号