首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   6篇
测绘学   3篇
大气科学   11篇
地球物理   20篇
地质学   41篇
海洋学   19篇
天文学   83篇
综合类   1篇
自然地理   12篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   8篇
  2008年   15篇
  2007年   9篇
  2006年   10篇
  2005年   12篇
  2004年   11篇
  2003年   15篇
  2002年   5篇
  2001年   12篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We present multiwaveband photometric and optical spectropolarimetric observations of the R =15.9 narrow emission-line galaxy R117_A which lies on the edge of the error circle of the ROSAT X-ray source R117. The overall spectral energy distribution of the galaxy is well modelled by a combination of a normal spiral galaxy and a moderate-strength burst of star formation. The far-infrared and radio emission is extended along the major axis of the galaxy, indicating an extended starburst.
On positional grounds, the galaxy is a good candidate for the identification of R117, and the observed X-ray flux is very close to what would be expected from a starburst of the observed far-infrared and radio fluxes. Although an obscured high-redshift QSO cannot be entirely ruled out as contributing some fraction of the X-ray flux, we find no candidates to K =20.8 within the X-ray error box, and so conclude that R117_A is responsible for a large fraction, if not all, of the X-ray emission from R117.
Searches for indicators of an obscured AGN in R117_A have so far proven negative; deep spectropolarimetric observations show no signs of broad lines to a limit of 1 per cent and, for the observed far-infrared and radio emission, we would expect 10 times greater X-ray flux if the overall emission were powered by an AGN. We therefore conclude that the X-ray emission from R117 is dominated by starburst emission from the galaxy R117_A.  相似文献   
6.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.  相似文献   
7.
Military training activities reduce vegetation cover, disturb crusts, and degrade soil aggregates, making the land more vulnerable to wind erosion. The objective of this study was to quantify wind erosion rates for typical conditions at the Marine Corps Air Ground Combat Center, Twentynine Palms, CA, U.S.A. Five Big Spring Number Eight (BSNE) sampler stations were installed at each of five sites. Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0·05 m and the highest sampler at 1·0 m above the soil surface. Once a month, sediment was collected from the samplers for analysis. Occurrence of saltating soil aggregates was recorded every hour using Sensits, one at each site. The site with the most erosion had a sediment discharge of 311 kg m−1 over a period of 17 months. Other sites eroded much less because of significant rock cover or the presence of a crust. Hourly sediment discharge was estimated combining hourly Sensit count and monthly sediment discharge measured using BSNE samplers. More simultaneously measured data are needed to better characterize the relationship between these two and reconstruct a detailed time-series of wind erosion. This measured time-series can then be used for comparison with simulation results from process-based wind erosion models such as the Wind Erosion Prediction System (WEPS), once it has been adapted to the unique aspects of military lands.  相似文献   
8.
‘No portion of the American continent is perhaps so rich in wonders as the Yellow Stone’ (F.V. Hayden, September 2, 1874)Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (1–200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem.  相似文献   
9.
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated δ34Ssulfide (3.7 to 12.7‰). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high δ34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (∼400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ∼300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5‰) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 × 1012 g seawater S yr−1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号