首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127968篇
  免费   1973篇
  国内免费   1725篇
测绘学   3835篇
大气科学   8708篇
地球物理   25721篇
地质学   48974篇
海洋学   10177篇
天文学   25499篇
综合类   2427篇
自然地理   6325篇
  2022年   734篇
  2021年   1240篇
  2020年   1349篇
  2019年   1437篇
  2018年   8047篇
  2017年   7169篇
  2016年   6218篇
  2015年   2120篇
  2014年   3401篇
  2013年   5445篇
  2012年   4684篇
  2011年   7679篇
  2010年   6470篇
  2009年   7751篇
  2008年   6761篇
  2007年   7344篇
  2006年   4244篇
  2005年   3379篇
  2004年   3384篇
  2003年   3238篇
  2002年   2855篇
  2001年   2448篇
  2000年   2291篇
  1999年   1721篇
  1998年   1830篇
  1997年   1765篇
  1996年   1391篇
  1995年   1455篇
  1994年   1276篇
  1993年   1118篇
  1992年   1094篇
  1991年   1008篇
  1990年   1131篇
  1989年   971篇
  1988年   885篇
  1987年   1042篇
  1986年   845篇
  1985年   1117篇
  1984年   1203篇
  1983年   1134篇
  1982年   1083篇
  1981年   942篇
  1980年   899篇
  1979年   780篇
  1978年   812篇
  1977年   736篇
  1976年   680篇
  1975年   674篇
  1974年   665篇
  1973年   671篇
排序方式: 共有10000条查询结果,搜索用时 843 毫秒
1.
2.
Geomagnetism and Aeronomy - Based on data from long-term observations at two geophysical observatories, Borok and College, distantly spaced in latitude and longitude, the results of remote...  相似文献   
3.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
4.
Geomagnetism and Aeronomy - The results of a study of the geoelectric section of the upper layers of the Earth at observation sites in Yakutia via vertical electrical sounding and surface impedance...  相似文献   
5.
6.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
7.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
8.
Sapphirine–quartz granulites from the Cocachacra region of the Arequipa Massif in southern Peru record early Neoproterozoic ultrahigh‐temperature metamorphism. Phase equilibrium modelling and zircon petrochronology are used to quantify timing and pressure–temperature (P–T) conditions of metamorphism. Modelling of three magnetite‐bearing sapphirine–quartz samples indicates peak temperatures of >950°C at ~0.7 GPa and a clockwise P–T evolution. Elevated concentrations of Al in orthopyroxene are also consistent with ultrahigh‐temperature conditions. Neoblastic zircon records ages of c. 1.0–0.9 Ga that are interpreted to record protracted ultrahigh‐temperature metamorphism. Th/U ratios of zircon of up to 100 reflect U‐depleted whole‐rock compositions. Concentrations of heavy rare earth elements in zircon do not show systematic trends with U–Pb age but do correlate with variable whole‐rock compositions. Very large positive Ce anomalies in zircon from two samples probably relate to strongly oxidizing conditions during neoblastic zircon crystallization. Low concentrations of Ti‐in‐zircon (<10 ppm) are interpreted to result from reduced titania activities due to the strongly oxidized nature of the granulites and the sequestration of titanium‐rich minerals away from the reaction volume. Whole‐rock compositions and oxidation state have a strong influence on the trace element composition of metamorphic zircon, which has implications for interpreting the geological significance of ages retrieved from zircon in oxidized metamorphic rocks.  相似文献   
9.
The aim of this paper is to formulate a micromechanics‐based approach to non‐aging viscoelastic behavior of materials with randomly distributed micro‐fractures. Unlike cracks, fractures are discontinuities that are able to transfer stresses and can therefore be regarded from a mechanical viewpoint as interfaces endowed with a specific behavior under normal and shear loading. Making use of the elastic‐viscoelastic correspondence principle together with a Mori‐Tanka homogenization scheme, the effective viscoelastic behavior is assessed from properties of the material constituents and damage parameters related to density and size of fractures. It is notably shown that the homogenized behavior thus formulated can be described in most cases by means of a generalized Maxwell rheological model. For practical implementation in structural analyses, an approximate model for the isotropic homogenized fractured medium is formulated within the class of Burger models. Although the approximation is basically developed for short‐term and long‐term behaviors, numerical applications indicate that the approximate Burger model accurately reproduce the homogenized viscoelastic behavior also in the transient conditions.  相似文献   
10.
Abstract— Active capture is a new process for the incorporation of large quantities of heavy noble gases into growing surfaces. Adsorption in the conventional sense involves surface bonding by polarization (Van der Waals forces). What is referred to as “anomalous adsorption” of heavy noble gases involves chemical bonds and can occur when other (more chemically active) species are not available to preempt sites with unfilled bonds. Anomalous adsorption has been observed under conditions of fracture, vacuum deposition and ionizing radiation. Active capture depends upon anomalous adsorption to retain noble gases on a surface long enough to be captured in a growing surface film as it is deposited. The fundamental principle may be the impingement onto the growing film with sufficient energy to liberate surface electrons (work function energy of a few electronvolts) so that they are retained by anomalous adsorption long enough to be entrapped in the growing surface. Trapping efficiencies of ?1% have been observed for Kr and Xe in laboratory experiments, implying a fundamentally new mechanism for the incorporation of heavy noble gases onto surfaces. It may play a role in explaining the large concentrations of planetary noble gases contained in phase‐Q.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号