首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
天文学   8篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1991年   1篇
  1972年   1篇
排序方式: 共有8条查询结果,搜索用时 16 毫秒
1
1.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   
2.
The Soft X-ray Telescope for the SOLAR-A mission   总被引:6,自引:0,他引:6  
The Soft X-ray Telescope (SXT) of the SOLAR-A mission is designed to produce X-ray movies of flares with excellent angular and time resolution as well as full-disk X-ray images for general studies. A selection of thin metal filters provide a measure of temperature discrimination and aid in obtaining the wide dynamic range required for solar observing. The co-aligned SXT aspect telescope will yield optical images for aspect reference, white-light flare and sunspot studies, and, possibly, helioseismology. This paper describes the capabilities and characteristics of the SXT for scientific observing.After the launch the name of SOLAR-A has been changed to YOHKOH.  相似文献   
3.
EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission   总被引:10,自引:0,他引:10  
The Extreme-ultraviolet Imaging Telescope (EIT) will provide wide-field images of the corona and transition region on the solar disc and up to 1.5 R above the solar limb. Its normal incidence multilayer-coated optics will select spectral emission lines from Fe IX (171 ), Fe XII (195 ), Fe XV (284 ), and He II (304 ) to provide sensitive temperature diagnostics in the range from 6 × 104 K to 3 × 106 K. The telescope has a 45 x 45 arcmin field of view and 2.6 arcsec pixels which will provide approximately 5-arcsec spatial resolution. The EIT will probe the coronal plasma on a global scale, as well as the underlying cooler and turbulent atmosphere, providing the basis for comparative analyses with observations from both the ground and other SOHO instruments. This paper presents details of the EIT instrumentation, its performance and operating modes.  相似文献   
4.
Eit and LASCO Observations of the Initiation of a Coronal Mass Ejection   总被引:2,自引:0,他引:2  
We present the first observations of the initiation of a coronal mass ejection (CME) seen on the disk of the Sun. Observations with the EIT experiment on SOHO show that the CME began in a small volume and was initially associated with slow motions of prominence material and a small brightening at one end of the prominence. Shortly afterward, the prominence was accelerated to about 100 km s-1 and was preceded by a bright loop-like structure, which surrounded an emission void, that traveled out into the corona at a velocity of 200–400 km s-1. These three components, the prominence, the dark void, and the bright loops are typical of CMEs when seen at distance in the corona and here are shown to be present at the earliest stages of the CME. The event was later observed to traverse the LASCO coronagraphs fields of view from 1.1 to 30 R⊙. Of particular interest is the fact that this large-scale event, spanning as much as 70 deg in latitude, originated in a volume with dimensions of roughly 35" (2.5 x 104 km). Further, a disturbance that propagated across the disk and a chain of activity near the limb may also be associated with this event as well as a considerable degree of activity near the west limb.  相似文献   
5.
The transition region and coronal explorer   总被引:5,自引:0,他引:5  
Handy  B.N.  Acton  L.W.  Kankelborg  C.C.  Wolfson  C.J.  Akin  D.J.  Bruner  M.E.  Caravalho  R.  Catura  R.C.  Chevalier  R.  Duncan  D.W.  Edwards  C.G.  Feinstein  C.N.  Freeland  S.L.  Friedlaender  F.M.  Hoffmann  C.H.  Hurlburt  N.E.  Jurcevich  B.K.  Katz  N.L.  Kelly  G.A.  Lemen  J.R.  Levay  M.  Lindgren  R.W.  Mathur  D.P.  Meyer  S.B.  Morrison  S.J.  Morrison  M.D.  Nightingale  R.W.  Pope  T.P.  Rehse  R.A.  Schrijver  C.J.  Shine  R.A.  Shing  L.  Strong  K.T.  Tarbell  T.D.  Title  A.M.  Torgerson  D.D.  Golub  L.  Bookbinder  J.A.  Caldwell  D.  Cheimets  P.N.  Davis  W.N.  Deluca  E.E.  McMullen  R.A.  Warren  H.P.  Amato  D.  Fisher  R.  Maldonado  H.  Parkinson  C. 《Solar physics》1999,187(2):229-260
The Transition Region and Coronal Explorer (TRACE) satellite, launched 2 April 1998, is a NASA Small Explorer (SMEX) that images the solar photosphere, transition region and corona with unprecedented spatial resolution and temporal continuity. To provide continuous coverage of solar phenomena, TRACE is located in a sun-synchronous polar orbit. The ∼700 Mbytes of data which are collected daily are made available for unrestricted use within a few days of observation. The instrument features a 30-cm Cassegrain telescope with a field of view of 8.5×.5 arc min and a spatial resolution of 1 arc sec (0.5 arc sec pixels). TRACE contains multilayer optics and a lumogen-coated CCD detector to record three EUV wavelengths and several UV wavelengths. It observes plasmas at selected temperatures from 6000 K to 10 MK with a typical temporal resolution of less than 1 min.  相似文献   
6.
Neupert  W.M.  Newmark  J.  Delaboudinière  J.-P.  Thompson  B.J.  Catura  R.C.  Moses  J.D.  Gurman  J.B.  Portier-Fozzani  F.  Maucherat  A.J.  Defise  J.M.  Jamar  C.  Rochus  P.  Dere  K.P.  Howard  R.A.  Michels  D.J.  Freeland  S.  Lemen  J.R.  Stern  R.A. 《Solar physics》1998,183(2):305-321
Solar EUV images recorded by the EUV Imaging Telescope (EIT) on SOHO have been used to evaluate temperature and density as a function of position in two largescale features in the corona observed in the temperature range of 1.0–2.0 MK. Such observations permit estimates of longitudinal temperature gradients (if present) in the corona and, consequently, estimates of thermal conduction and radiative losses as a function of position in the features. We examine two relatively cool features as recorded in EIT's Feix/x (171 Å) and Fexii (195 Å) bands in a decaying active region. The first is a long-lived loop-like feature with one leg, ending in the active region, much more prominent than one or more distant footpoints assumed to be rooted in regions of weakly enhanced field. The other is a near-radial feature, observed at the West limb, which may be either the base of a very high loop or the base of a helmet streamer. We evaluate energy requirements to support a steady-state energy balance in these features and find in both instances that downward thermal conductive losses (at heights above the transition region) are inadequate to support local radiative losses, which are the predominant loss mechanism. The requirement that a coronal energy deposition rate proportional to the square of the ambient electron density (or pressure) is present in these cool coronal features provides an additional constraint on coronal heating mechanisms.  相似文献   
7.
Dere  K.P.  Moses  J.D.  Delaboudinière  J.-P.  Brunaud  J.  Carabetian  C.  Hochedez  J.-F.  Song  X.Y.  Catura  R.C.  Clette  F.  Defise  J.-M. 《Solar physics》2000,195(1):13-44
This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey–Chrétien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 Å. Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.  相似文献   
8.
Eit Observations of the Extreme Ultraviolet Sun   总被引:3,自引:0,他引:3  
The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line groups: Feix, x, Fexii, Fexv, and Heii. A post-launch determination of the instrument flatfield, the instrument scattering function, and the instrument aging were necessary for the reduction and analysis of the data. The observed structures and their evolution in each of the four EUV bandpasses are characteristic of the peak emission temperature of the line(s) chosen for that bandpass. Reports on the initial results of a variety of analysis projects demonstrate the range of investigations now underway: EIT provides new observations of the corona in the temperature range of 1 to 2 MK. Temperature studies of the large-scale coronal features extend previous coronagraph work with low-noise temperature maps. Temperatures of radial, extended, plume-like structures in both the polar coronal hole and in a low latitude decaying active region were found to be cooler than the surrounding material. Active region loops were investigated in detail and found to be isothermal for the low loops but hottest at the loop tops for the large loops. Variability of solar EUV structures, as observed in the EIT time sequences, is pervasive and leads to a re-evaluation of the meaning of the term ‘quiet Sun’. Intensity fluctuations in a high cadence sequence of coronal and chromospheric images correspond to a Kolmogorov turbulence spectrum. This can be interpreted in terms of a mixed stochastic or periodic driving of the transition region and the base of the corona. No signature of the photospheric and chromospheric waves is found in spatially averaged power spectra, indicating that these waves do not propagate to the upper atmosphere or are channeled through narrow local magnetic structures covering a small fraction of the solar surface. Polar coronal hole observing campaigns have identified an outflow process with the discovery of transient Fexii jets. Coronal mass ejection observing campaigns have identified the beginning of a CME in an Fexii sequence with a near simultaneous filament eruption (seen in absorption), formation of a coronal void and the initiation of a bright outward-moving shell as well as the coronal manifestation of a ‘Moreton wave’. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004902913117  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号