首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   7篇
天文学   2篇
  2021年   1篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2009年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.

Discussion

Synplutonic Mafic Dykes from Late Archaean Granitoids in the Eastern Dharwar Craton, Southern India by M. Jayananda, T. Miyazaki, R.V. Gireesh, N. Mahesha and T. Kano. Jour. Geol. Soc. India, v.73, 2009, pp.117–130  相似文献   
2.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   
3.
A vast tract of ENE–WSW to NE–SW trending mafic dyke swarm transects Archaean basement rocks within the eastern Dharwar craton. Petrographic data reveal their dolerite/olivine dolerite or gabbro/olivine gabbro composition. Geochemical characteristics, particularly HFSEs, indicate that not all these dykes are co-genetic but are probably derived from more than one magma batch and different crystallization trends. In most samples the LaN/LuN ratio is at ∼2, whereas others have a LaN/LuN ratio >2 and show higher concentrations of high-field strength elements (HFSEs) than the former group. As a consequence, we assume that the ENE–WSW to NE–SE trending mafic dykes of the eastern Dharwar craton do not represent one single magmatic event but were emplaced in two different episodes; one of them dated at about 2.37 Ga and another probably at about 1.89 Ga. Trace element modelling also supports this inference: older mafic dykes are derived from a melt generated through ∼25% melting of a depleted mantle, whereas the younger set of dykes shows its derivation through a lower degree of melting (∼15%) of a comparatively enriched mantle source.  相似文献   
4.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   
5.
The phosphorus fractions in three tropical mangrove systems of Cochin region were analysed by sequential extraction method. Iron-bound phosphorus was the major fraction in the first two stations, while station 3 was exclusively dominated by calcium-bound phosphorus. Compared to other stations, about tenfold increase in total phosphorus content was observed at station 3. This station is a congregation of communally breeding birds, and there is accumulation of bird guano. Mineralogical analysis showed the presence of monetite, a thermodynamically metastable calcium phosphate mineral, in this unique system. The excreta and carcass of the birds in this sanctuary seems to be the reason for the formation of monetite, which is favoured by periodic fluctuations in redox potential. The high mass percentages of calcium and phosphorus by XRF and SEM–EDS analysis confirm the existence of calcium phosphate mineral at station 3. First two stations did not show any noticeable difference in phosphorus fractions and inorganic fractions constituted to about 65% of total phosphorus. But at station 3, inorganic fractions were about 92%. Low C:P ratios and low organic phosphorus content indicated active mineralisation of phosphorus at station 3. Bioavailable fractions of phosphorus at stations 1 and 2 were about 75%, whereas 98% of the total phosphorus was bioavailable at station 3. Since the bulk of the total phosphorus is bioavailable, these mangrove sediments have the potential to act as source of phosphorus to the overlying waters.  相似文献   
6.
The Delhi Supergroup rocks of Mesoproterozoic age in the north-eastern part of Delhi-Aravalli belt are polydeformed. These rocks show meso and micro-scale stretched quartzo-feldspathic veins in the gneissic rocks in association with marble and amphibolites in contrast to those commonly described from the low grade metamorphic rocks in the northeastern part of the Delhi-Aravalli belt. The textural features of the veins which show stretched crystals in gneisses indicate that these developed in phases episodically in the direction of mineral lineation. The veins occupy tensional cracks without shear component and developed when the fluid pressure was high enough as they form in amphibolite facies of metamorphism.  相似文献   
7.
A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15?–?85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of \({\approx}\,15\,\mbox{--}\,85~\mbox{MHz}\) during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that
  1. i)
    Type I storm bursts have a spectral index of \({\approx}\,{+}3.5\),
     
  2. ii)
    the spectral index of the background continuum is \({\approx}\,{+}2.9\),
     
  3. iii)
    the transition frequency between Type I and Type III storms occurs at \({\approx}\,55~\mbox{MHz}\),
     
  4. iv)
    Type III bursts have an average spectral index of \({\approx}\,{-}2.7\),
     
  5. v)
    the spectral index of the Type III continuum is \({\approx}\,{-}1.6\), and
     
  6. vi)
    the degree of circular polarization of all Type I (Type III) bursts is \({\approx}\,90\%\) (\(30\%\)).
     
The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.
  相似文献   
8.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   
9.
Gireesh  G. V. S.  Kathiravan  C.  Barve  Indrajit V.  Ramesh  R. 《Solar physics》2021,296(8):1-45

This memoir is a summary of my early childhood, education, and research career at the Naval Research Laboratory (NRL) in Washington, DC. I describe my early interest in astronomy and how I wound up working in the fields of solar physics and X-ray-UV spectroscopy of high temperature plasmas. I describe some of my home life and other interests, my education at the University of Pittsburgh, and the various projects and management activities that I have been fortunate to work on at NRL. I have been blessed with being able to work at a first-class research laboratory populated by outstanding scientists. I am particularly blessed to have worked with my many friends and colleagues in the NRL Space Science Division. Perhaps I am most blessed by having had wonderful parents that gave me the interests I have in life and the passion to pursue them, and an outstanding wife that has been my partner through good and bad times for over 50 years. I am now retired but for three years I was a participant in the NRL Voluntary Emeritus Program (VEP). However, this memoir is a personal account, and not work done as a VEP.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号