首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   3篇
  国内免费   2篇
大气科学   4篇
地球物理   24篇
地质学   26篇
海洋学   3篇
天文学   8篇
自然地理   12篇
  2021年   1篇
  2019年   2篇
  2017年   3篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1970年   3篇
排序方式: 共有77条查询结果,搜索用时 828 毫秒
1.
2.
3.
This paper demonstrates the use of a Geographic Information System (GIS) to develop timber thinning strategies on the Kyburz Planning Area of the Tahoe National Forest in northeastern California. The primary criteria used in an assessment of selective thinning potential were forest health and fire hazard ratings. By eliminating environmentally sensitive, economically unfeasible, or low fire hazard areas from consideration, the use of GIS reduced the area that was considered appropriate for thinning by approximately 58%. GIS offers considerable potential for improving resource management strategies.  相似文献   
4.
Wind regimes in the vicinity of the Namib Sand Sea are high energy unimodal near the coast, becoming bimodal or complex inland. There is an overall decrease in wind energy and sand transport rates from south to north and west to east, such that sand moves from coastal and southern source areas to accumulate in the northern and central parts of the sand sea. Such a pattern can explain much of the observed spatial variability in dune types, sizes, and sediment characteristics and lends support to a climatic model of sand sea formation in this region. Seasonal and daily cycles of wind velocity and direction give rise to episodic sand transport, most of which is generated by winds of moderate velocity and frequency.  相似文献   
5.
Simple, and locally compound, transverse and barchanoid dunes dominate the 2000 km2 Skeleton Coast dunefield in northwestern Namibia/South West Africa. Dune height and spacing are closely correlated (r = 0-89) and decrease across the dunefield from southwest to northeast, with an accompanying change from transverse to barchanoid ridges and ultimately barchans. The dunes are aligned transverse to the dominant strong south and south southwest onshore winds. Alignment patterns indicate that surface roughness changes between coastal plain and dunes cause dune-forming winds to swing to the right over the dunes, but resume their original direction beyond. Grain size and sorting vary at three scales: the dune, the dune landscape and through the dunefield. Overall the sands, derived from three localities by deflation from beaches supplied by vigorous longshore drift, become progressively finer and better sorted across the dunefield paralleling changes in dune height and spacing. A statistically significant relationship (r = ?0?65) was established between dune spacing and the phi grain size of the coarser fraction of the dune sands, demonstrating the importance of the protective effects of coarse grains, and suggesting that the morphometry of simple transverse dunes may be controlled by the scale of turbulence associated with the threshold wind speed required to move the coarsest fraction of the dune sand.  相似文献   
6.
The sedimentary record of aeolian sand systems extends from the Archean to the Quaternary, yet current understanding of aeolian sedimentary processes and product remains limited. Most preserved aeolian successions represent inland sand‐sea or dunefield (erg) deposits, whereas coastal systems are primarily known from the Cenozoic. The complexity of aeolian sedimentary processes and facies variability are under‐represented and excessively simplified in current facies models, which are not sufficiently refined to reliably account for the complexity inherent in bedform morphology and migratory behaviour, and therefore cannot be used to consistently account for and predict the nature of the preserved sedimentary record in terms of formative processes. Archean and Neoproterozoic aeolian successions remain poorly constrained. Palaeozoic ergs developed and accumulated in relation to the palaeogeographical location of land masses and desert belts. During the Triassic, widespread desert conditions prevailed across much of Europe. During the Jurassic, extensive ergs developed in North America and gave rise to anomalously thick aeolian successions. Cretaceous aeolian successions are widespread in South America, Africa, Asia, and locally in Europe (Spain) and the USA. Several Eocene to Pliocene successions represent the direct precursors to the present‐day systems. Quaternary systems include major sand seas (ergs) in low‐lattitude and mid‐latitude arid regions, Pleistocene carbonate and Holocene–Modern siliciclastic coastal systems. The sedimentary record of most modern aeolian systems remains largely unknown. The majority of palaeoenvironmental reconstructions of aeolian systems envisage transverse dunes, whereas successions representing linear and star dunes remain under‐recognized. Research questions that remain to be answered include: (i) what factors control the preservation potential of different types of aeolian bedforms and what are the characteristics of the deposits of different bedform types that can be used for effective reconstruction of original bedform morphology; (ii) what specific set of controlling conditions allow for sustained bedform climb versus episodic sequence accumulation and preservation; (iii) can sophisticated four‐dimensional models be developed for complex patterns of spatial and temporal transition between different mechanisms of accumulation and preservation; and (iv) is it reasonable to assume that the deposits of preserved aeolian successions necessarily represent an unbiased record of the conditions that prevailed during episodes of Earth history when large‐scale aeolian systems were active, or has the evidence to support the existence of other major desert basins been lost for many periods throughout Earth history?  相似文献   
7.
8.
The Tertiary Tsondab Sandstone Formation, which underlies much of the present Namib Sand Sea, is a key element in understanding the Cenozoic evolution of the Namib Desert. Outcrops of the aeolian facies of the Tsondab Sandstone at Elim and Diep Rivier consist of two sequences of bioturbated cross-strata separated by likely formation-scale surfaces of stabilisation. Cross-strata consist of scalloped sets about 200 m in width and separated by southeast dipping bounding surfaces. Internally, sets contain reactivation surfaces of probable seasonal origin. The north to south-southeast dipping foresets define crescent shapes with a trough axis trending northeast. Although additional data are needed to define the Tsondab bedform, the outcrop data is best satisfied in computer simulations by north trending, east migrating main bedforms, which had relatively large and slow-moving dunes superimposed upon their eastern flanks and migrated to the north. Foresets dipping to the south to south-southwest at Elim suggest that superimposed dunes also occurred on the western flanks of the main bedform and migrated to the south, but that their record was largely lost with net eastward migration of the main bedform. This preliminary Tsondab model shares attributes such as trend, scale of cross-strata, and presence of scalloped sets with reactivation surfaces with computer models of the modern linear dunes in which large-scale sinuosity migrates alongcrest to the north. Differences emerge in the overall set architecture and the orientation of cross-strata and bounding surfaces, as well as the degree of vegetation that must have characterised Tsondab dunes.  相似文献   
9.
A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g?1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g?1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).  相似文献   
10.
To further develop prediction of the range of morphological adjustments associated with sediment pulses in bar‐pool channels, we analyze channel bed topographic data collected prior to and following the removal of two dams in Oregon: Marmot Dam on the Sandy River and Brownsville Dam on the Calapooia River. We hypothesize that, in gravel‐bed, bar‐pool channels, the response of bed relief to sand and gravel sediment pulses is a function of initial relief and pulse magnitude. Modest increases in sediment supply to initially low‐relief, sediment‐poor cross‐sections will increase bed relief and variance of bed relief via bar deposition. Modest increases in sediment supply to initially high‐relief cross‐sections, characteristic of alternate bar morphology, will result in decreased bed relief and variance of relief via deposition in bar‐adjacent pools. These hypothesized adjustments are measured in terms of bed relief, which we define as the difference in elevation between the pool‐bottom and bar‐top. We evaluate how relief varies with sediment thickness, where both relief and mean sediment thickness at a cross‐section are normalized by the 90th percentile of observed relief values within a reach prior to a sediment pulse. Field measurements generally supported the stated hypotheses, demonstrating how introduction of a sediment pulse to low‐relief reaches can increase mean and variance of relief, while introduction to high‐relief reaches can decrease the mean and variance of bed relief, at least temporarily. In general, at both sites, the degree of impact increased with the thickness of sediment delivered to the cross‐section. Results thus suggest that the analysis is a useful step for understanding the morphological effects of sediment pulses introduced to gravel‐bed, bar‐pool channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号