首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
地球物理   11篇
地质学   10篇
天文学   4篇
  2024年   1篇
  2023年   1篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1976年   1篇
排序方式: 共有25条查询结果,搜索用时 312 毫秒
1.
1800 m of drill core through the Nojima fault zone, Japan, reveals subsidiary fault and fracture networks that developed in the fault zone that triggered the 1995 Ms 7.2 Kobe earthquake. The subsidiary fault zones contain a fault gouge of < 1 cm bounded by thin zones of foliated cataclasite or breccia. Fractures are filled with calcite veins, calcite-cemented breccias, clay, and iron-oxide and carbonate alternation of the granitic host rock. These features are typical of extensional fractures that form the conduit network for fluid flux close to a major fault zone. The zone of distributed deformation surrounding the main fault is 50 m in width, and the dip of the Nojima fault at > 1 km depth is 75°. The fault-fracture networks associated with the Nojima fault zone are coseismic and were filled with carbonate and fine-grained material during repeated seismic-related infiltration of the fault zone by carbonate-bearing subsurface water. This study shows that fault-related fracture networks plays an important role as fluid flow conduits within seismically active faults, and can change in character from zones of high permeability to low permeability due to cementation and/or pore collapse.  相似文献   
2.
We examined how and why dominant peak-flow runoff-generation mechanisms differ among neighbouring headwater catchments. We monitored runoff and groundwater levels and performed terrain analyses in a granitic second-order catchment and its four neighbouring subcatchments in the Kiryu Experimental Watershed in Japan. Our analysis of lag times from peak rainfall to peak runoff suggests differences in the dominant peak-flow runoff-generation mechanisms among the five catchments. For two of the three zero-order catchments, with few perennial groundwater bodies, subsurface flow from hillslopes was the dominant mechanism at some events. However, the dominant mechanisms were channel precipitation and riparian runoff at almost all events in first- and second-order catchments and in the third zero-order catchment, which has a large perennial groundwater body over a bedrock depression in the riparian zone. In this zero-order catchment, the quick-flow ratio was the smallest of the five catchments because subsurface flow from the hillslope was buffered at the riparian zone. These facts suggest that the channel length, riparian buffering, and hillslope connectivity were the factors governing the different dominant peak-flow runoff-generation mechanisms among the catchments. Riparian buffering was affected, not only by surface topography, but also by bedrock topography and bedrock groundwater (BGW) dynamics. Our findings indicate that both of BGW dynamics and topography are important for catchment classification, and the relative importance of topography increases with the change from baseflow to stormflow. Furthermore, mismatching between a geographic source and a flow path resulted in different catchment classifications depending on the approach. Therefore, multiple approaches during both baseflow and stormflow periods are necessary for catchment classification to apply information obtained from one headwater catchment to other headwater catchments within the same region.  相似文献   
3.
INVERSION OF STRIKE-SLIP MOVEMENTS ALONG THE YARLUNG ZANGBO SUTURE ZONE, TIBET  相似文献   
4.
Understanding the exhumation process of deep-seated material within subduction zones is important in comprehending the tectonic evolution of active margins. The deformation and slip history of superficial nappe pile emplaced upon high-P/T type metamorphic rocks can reveal the intimate relationship between deformation and transitions in paleo-stress that most likely arose from changes in the direction of plate convergence and exhumation of the metamorphic terrane. The Kinshozan–Atokura nappe pile emplaced upon the high-P/T type Sanbagawa (= Sambagawa) metamorphic rocks is the remnant of a pre-existing terrane located between paired metamorphic terranes along the Median Tectonic Line (MTL) of central Japan. Intra- and inter-nappe structures record the state of paleo-stress during metamorphism and exhumation of the Sanbagawa terrane. The following tectonic evolution of the nappes is inferred from a combined structural analysis of the basal fault of the nappes and their internal structures. The relative slip direction along the hanging wall rotated clockwise by 180°, from S to N, in association with a series of major tectonic changes from MTL-normal contraction to MTL-parallel strike-slip and finally MTL-normal extension. This clockwise rotation of the slip direction can be attributed to changes in the plate-induced regional stress state and associated exhumation of the deep-seated Sanbagawa terrane from the Late Cretaceous (Coniacian) to the Middle Miocene.  相似文献   
5.
6.
We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy, FPS, Shen and LS, employing the Tomimura–Eriguchi scheme to construct the equilibrium configurations. We study the basic physical properties of the sequences in the framework of Newtonian gravity. In addition, we take a new step by taking into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g. structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyse this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than  1015 g cm−3  . The maximum baryon mass of the magnetized stars with axis ratio   q ∼ 0.7  increases about up to 20 per cent for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.  相似文献   
7.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   
8.
9.
Geochronological and geochemical studies reveal the possible origin of the restricted body of mylonite rocks occurring at the eastern edge of Kyushu Island, Japan, just in contact with the Sashu Fault, a part of the Paleo‐Median Tectonic Line (Paleo‐MTL). The LA‐ICP‐MS zircon U–Pb dating of the quartz diorite mylonite in this mylonitic body indicates a crystallization age of 114.0 ±1.7 Ma. Moreover, the two tonalite samples appear as thin layers within the Permian fine‐grained mafic mylonite; a part of the same body yields the age of 113.7 ±2.3 Ma and 116.9 ±1.3 Ma, with extremely low Th/U ratio. These quartz diorite mylonite and tonalite are consistent with the late Early Cretaceous magmatism and coeval metamorphism similar to those in the Higo Plutono‐metamorphic Complex in western Kyushu, Japan. This newly characterized complex occurs just south of the Cretaceous Sambagawa metamorphic rocks. The newly characterized mylonitic rocks are lying structurally above the Sambagawa Metamorphic Complex and are distributed along the Paleo‐MTL. The extension of the Higo Plutonometamorphic Complex, as well as the structural relationship between this complex and the Sambagawa Metamorphic Complex, is still controversial but holds a key to reconstruct the tectonic evolution of Southwest Japan during the Late Mesozoic to Early Cenozoic period. Hence, this article provides new insight into the reconstruction of the evolution history of East Asia as an active convergent margin.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号