首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
地球物理   1篇
天文学   14篇
  2017年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  1997年   2篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Divine-Staubach and the Dikarev model. They typically cover mass ranges from 10−18 g to 1 g and are applicable for model specific Sun distance ranges between 0.1 AU and 20 AU Near 1 AU averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Grün et al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical and radar) and in situ (captured Inter Stellar Dust Particles, in situ detectors and analysis of retrieved hardware) measurements and simulations.  相似文献   
2.
Elevated shorelines and lake sediments surrounding Issyk Kul, the world's second largest mountain lake, record fluctuating lake levels during Quaternary times. Together with bathymetric and geochemical data, these markers document alternating phases of lake closure and external drainage. The uppermost level of lake sediments requires a former damming of the lake's western outlet through the Boam gorge. We test previous hypothesised ice or landslide dam failures by exploring possible links between late Quaternary lake levels and outbursts. We review and recompile the chronology of reported changes in lake site, and offer new ages of abandoned shorelines using 14C in bivalve and gastropod shells, and plant detritus, as well as sand lenses in delta and river sediments using Infrared Stimulated Luminescence. Our dates are consistent with elevated lake levels between ~45 ka and 22 ka. Cosmogenic 10Be and 26Al exposure ages of fan terraces containing erratic boulders (>3 m) downstream of the gorge constrain the timing of floods to 20.5–18.5 ka, postdating a highstand of Issyk Kul. A flow‐competence analysis gives a peak discharge of >104 m3 s–1 for entraining and transporting these boulders. Palaeoflood modelling, however, shows that naturally dammed lakes unconnected to Issyk Kul could have produced such high discharges upon sudden emptying. Hence, although our data are consistent with hypotheses of catastrophic outburst floods, average lake‐level changes of up to 90 mm yr–1 in the past 150 years were highly variable without any outbursts, so that linking lake‐level drops to catastrophic dam breaks remains ambiguous using sedimentary archives alone. This constraint may readily apply to other Quaternary lakes of that size elsewhere. Nonetheless, our reconstructed Pleistocene floods are among the largest reported worldwide, and motivate further research into the palaeoflood hydrology of Central Asia. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
3.
W. Landgraf 《Solar physics》1992,142(2):403-406
From astrometric observations of minor planet (1566) Icarus from 1949 to 1987 were made solutions for improved orbital elements of Icarus and the quadrupole moment of the Sun. The formal result was J2 = -0.6±5.8 &d 10–6. From this we can conclude that J 2 is very probably less than 2 · 10–-5.  相似文献   
4.
The orbital distributions of dust particles in interplanetary space are revised in the ESA meteoroid model to incorporate more observational data and to comply with the constraints due to the long-term particle dynamics under the planetary gravity and Poynting–Robertson effect. Infrared observations of the zodiacal cloud by the COBE Earth-bound observatory, flux measurements by the dust detectors on board Galileo and Ulysses spacecraft, and the crater size distributions on lunar rock samples retrieved by the Apollo missions are fused into a single model. Within the model, the orbital distributions are expanded into a sum of contributions due to a number of known sources, including the asteroid belt with the emphasis on the prominent families Themis, Koronis, Eos and Veritas, as well as comets on Jupiter-encountering orbits. An attempt to incorporate the meteor orbit database acquired by the Advanced Meteor Orbit Radar at Christchurch is also discussed. Work was done during D. Galligan’s stay at the University of Canterbury.  相似文献   
5.
Horn  T.  Staude  J.  Landgraf  V. 《Solar physics》1997,172(1-2):69-76
The solar vacuum telescopes VTT and GCT at Tenerife have been used to obtain high-resolution two-dimensional spectro-polarimetric observations of oscillations in the photospheric layers of sunspots. At the GCT the area of the sunspot has been scanned by shifting the spectrograph slit; at the VTT a Fabry–Pérot interferometer has been applied to get narrow-band filtergrams directly and to scan through the line profile.The spectra of velocity oscillations show the known features of closely packed power peaks in bands of periods around 3 min (strengthened) and 5 min (weakened with respect to the quiet Sun). In the same frequency bands the more reliable VTT data show significant oscillations of the magnetic field strength as well, which could not be attributed to disturbing influences. Maximum power of both velocity and magnetic oscillations and a strong correlation between them, in the 3-min band in particular, is found to occur in those parts of the umbra where the magnetic lines of force are parallel to the line of sight. The oscillations are characterized by a marked spatial fine structure and a non-stationary behaviour.  相似文献   
6.
7.
The zodiacal foreground for a highly sensitive space infrared interferometer is predicted for various observing locations. For the predictions we use a model that was derived from measurements of the Cosmic Background Explorer (COBE). We find that at a wavelength of10 μm 96% of the sky is darker than 1 MJy sr-1 for observations in the ecliptic plane at 5 AU, and 83% is darker than 0.1 MJy sr-1.At 1 AU, however, always more than 50% of the sky are brighter than1 MJy sr-1, even if the observations are made from 30° or60° of latitude above the ecliptic plane, at 10 or 20 μm.Thus, according to the employed model, the foreground reduction by increasing the heliocentric distance of the observing location is more effective than by increasing the latitude. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
The Stardust mission returned two types of unprecedented extraterrestrial samples: the first samples of material from a known solar system body beyond the moon, the comet 81P/Wild2, and the first samples of contemporary interstellar dust. Both sets of samples were captured in aerogel and aluminum foil collectors and returned to Earth in January 2006. While the analysis of particles from comet Wild 2 yielded exciting new results, the search for and analysis of collected interstellar particles is more demanding and is ongoing.Novel dust instrumentation will tremendously improve future dust collection in interplanetary space: an Active Cosmic Dust Collector is a combination of an in-situ dust trajectory sensor (DTS) together with a dust collector consisting of aerogel and/or other collector materials, e.g. such as those used by the Stardust mission. Dust particles’ trajectories are determined by the measurement of induced electrical signals when charged particles fly through a position sensitive electrode system. The recorded waveforms enable the reconstruction of the velocity vector with high precision.The DTS described here was subject to performance tests at the Heidelberg dust accelerator at the same time as the recording of impact signals from potential collector materials. The tests with dust particles in the speed range from 3 to 40 km/s demonstrate that trajectories can be measured with accuracies of ~1° in direction and ~1% in speed. The sensitivity of the DTS electronics is of the order of 10?16 C and thus the trajectory of cosmic dust particles as small as 0.4 μm size can be measured. The impact position on the collector can be determined with better than 1 mm precision, which will ease immensely the task of locating sub-micron-sized particles on the collector. Statistically significant numbers of trajectories of interplanetary and interstellar dust particles can thus be collected in interplanetary space and their compositions correlated with their trajectories.  相似文献   
9.
We represent the publication of photographic observations of some minor planets, made at the University Observatory Siegen.  相似文献   
10.
The Tracking and Imaging RAdar (TIRA) at the Research Establishment for Applied Science (FGAN) was used in the L-band (1.33 GHz) to observe the Leonid shower in 1999. The radar beam was pointed directly into the radiant in the constellation Leo to receive “head echoes” from meteoroids when they ablate in the atmosphere at altitudes around 100 km. Two hundred and eighty-seven meteors were observed during 21 h in the early hours of November 17 and 18, 1999. The individual velocities, radiants and rough heliocentric orbits are calculated. Criteria are derived from optically observed Leonids which are then applied to decide whether an echo was created by a Leonid or a background meteoroid. However, in most cases the accuracy in the observational data is not good enough to allow for a clear distinction. Only for 100 meteors the velocity errors were less than 10 km/s. Out of those, 71 could be excluded on a 3σ level to be a Leonid (95 are excluded on a 1σ level). This confirms the theory that the Leonids have dominantly sizes of optical meteoroids with no significant extension in the lower mass range. Therefore, the risk of meteoroid impacts on spacecraft does not increase considerably during a Leonid storm. Background measurements 9 days after the Leonids maximum were taken in 2001 which corroborated the overall results obtained in 1999.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号