首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   1篇
地质学   1篇
天文学   5篇
  2013年   1篇
  2007年   1篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1986年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Abstract— We present here ion microprobe analyses of rare earth and other selected trace and minor elements in pyroxenes of shergottite Queen Alexandra Range 94201 and lunar basalt 15555. Pyroxene zonation patterns record the crystallization histories of these two basaltic samples from Mars and the Moon, respectively, and allow a comparison of mafic melt evolution on these two planetary bodies. Elemental abundances and trends in pyroxenes of these two rocks indicate that their minerals formed by continuous, closed system fractional crystallization of their respective parent melts. This further supports the idea that QUE 94201 closely represents the composition of a true Martian basaltic melt (McSween et al., 1996). The main differences in pyroxene elemental zonation patterns in these two objects are attributed to earlier crystallization of whitlockite in QUE 94201 (i.e., before the Fe-rich pyroxenes) than in 15555 (after the Fe-rich pyroxenes). The size of Eu anomalies in pyroxenes of QUE 94201 is intermediate between that in pyroxenes of 15555 and the other shergottites and may imply that fO2 conditions during crystallization of this Martian basalt were significantly more reducing than for other shergottites, although not quite as reducing as for lunar basalts. Cerium anomalies appear to be less prevalent in pyroxenes of QUE 94201 than other Antarctic shergottites and could be indicative of lesser degree of weathering in the Antarctic.  相似文献   
2.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   
3.
Abstract— We present the results of a combined mineralogic‐petrologic and ion microprobe study of two martian meteorites recently recovered in the Lybian Sahara, Dar al Gani 476 (DaG 476) and Dar al Gani 489 (DaG 489). Having resided in a hot desert environment for an extended time, DaG 476 and DaG 489 were subjected to terrestrial weathering that significantly altered their chemical composition. In particular, analyses of some of the silicates show light rare earth element (LREE)‐enrichment resulting from terrestrial alteration. In situ measurement of trace element abundances in minerals allows us to identify areas unaffected by this contamination and, thereby, to infer the petrogenesis of these meteorites. No significant compositional differences between DaG 476 and DaG 489 were found, supporting the hypothesis that they belong to the same fall. These meteorites have characteristics in common with both basaltic and lherzolitic shergottites, possibly suggesting spatial and petrogenetic associations of these two types of lithologies on Mars. However, the compositions of Fe‐Ti oxides and the size of Eu anomalies in the earliest‐formed pyroxenes indicate that the two Saharan meteorites probably experienced more reducing crystallization conditions than other shergottites (with the exception of Queen Alexandra Range (QUE) 94201). As is the case for other shergottites, trace element microdistributions in minerals of the DaG martian meteorites indicate that closed‐system crystal fractionation from a LREE‐depleted parent magma dominated their crystallization history. Furthermore, rare earth element abundances in the orthopyroxene megacrysts are consistent with their origin as xenocrysts rather than phenocrysts.  相似文献   
4.
5.
The basic principles of the application of the linear system theory for smoothing noise-degraded d.c. geoelectrical sounding curves were recently established by Patella. A field Schlumberger sounding is presented to demonstrate first their application and validity. To achieve this purpose, firstly it is pointed out that the required smoothing or low-pass filtering can be considered as an intrinsic property of the transformation of original Schlumberger sounding curves into pole-pole (two-electrode) curves. Then we sketch a numerical algorithm to perform the transformation, opportunely modified from a known procedure for transforming dipole diagrams into Schlumberger ones. Finally we show a field example with the double aim of demonstrating (i) the high quality of the low-pass filtering, and (ii) the reliability of the transformed pole-pole curve as far as quantitative interpretation is concerned.  相似文献   
6.
Abstract— We measured with a secondary ion mass spectrometer Mn/Cr ratios and Cr isotopes in individual grains of Mn-bearing sulfides (i.e., sphalerites, ZnS; alabandites, MnS; and niningerites, MgS) in nine unequilibrated enstatite chondrites (UECs). The goals were to determine whether live 53Mn (half-life ~3.7 Ma) was incorporated in these objects at the time of their isotopic closure and to establish whether Mn-Cr systematics in sulfides in UECs can be used as a high-resolution chronometer to constrain formation time differences between these meteorites. Sulfide grains analysed in four of these UECs, MAC 88136 (EL3), MAC 88184 (EL3), MAC 88180 (EL3), and Indarch (EH4), have clear 53Cr excesses. These 53Cr excesses can be very large (δ53Cr/52Cr ranges up to ~18,400%, the largest 53Cr excess measured so far) and, in some grains, are well correlated with the Mn/Cr ratios. Thus, they were most likely produced by the in situ decay of 53Mn in the meteorite samples. In the remaining five meteorites, no detectable excesses of 53Cr were found, and only upper limits on the initial 53Mn/55Mn ratios could be established. The four meteorites with 53Cr excesses show variations in the inferred 53Mn/55Mn ratios in various sulfide grains of the same meteorite. The Mn-Cr systematics in these sulfides were disturbed (during and/or after the decay of 53Mn) by varying degrees of reequilibration. Provided 53Mn was homogeneously distributed in the region of the early solar system where these objects formed, the data suggest that the time of the last isotopic equilibration of sulfides in EL chondrites occurred at least 3 Ma after a similar episode in EH chondrites.  相似文献   
7.
Abstract— Rare earth element (REE) and other selected trace and minor element concentrations were measured in individual grains of orthopyroxene, feldspathic glass (of plagioclase composition) and merrillite of the ALH 84001 Martian meteorite. Unlike in other Martian meteorites, phosphate is not the main REE carrier in ALH 84001. The REE pattern of ALH 84001 bulk rock is dependent on the modal abundances of three REE-bearing phases, namely, orthopyroxene, which contains most of the heavy rare earth elements (HREEs); feldspathic glass, which dominates the Eu abundances; and merrillite, which contains the majority of the light rare earth elements (LREEs). Variations in the REE abundances previously observed in different splits of ALH 84001 can easily be explained in terms of small variations in the modal abundances of these three minerals without the need to invoke extensive redistribution of LREEs. At least some orthopyroxenes (i.e., those away from contacts with feldspathic glass) in ALH 84001 appear to have preserved their original REE zonation from igneous fractionation. An estimate of the ALH 84001 parent magma composition from that of the unaltered orthopyroxene “core” (i.e., zoned orthopyroxene with the lowest REE abundances) indicates that it is LREE depleted. This implies that the Martian mantle was already partly depleted within ~100 Ma of solar system formation, which is consistent with rapid accretion and differentiation of Mars. Although equilibration and exchange of REEs between phases (in particular, transport of LREEs into the interstitial phases, feldspathic glass and merrillite) cannot be ruled out, our data suggest that the LREE enrichment in melts “in equilibrium” with these interstitial phases is most likely the result of late-stage infiltration of the cumulate pile by a LREE-enriched melt.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号