首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   2篇
  国内免费   4篇
测绘学   20篇
大气科学   8篇
地球物理   46篇
地质学   69篇
海洋学   20篇
天文学   56篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   9篇
  2019年   5篇
  2018年   20篇
  2017年   12篇
  2016年   12篇
  2015年   14篇
  2014年   17篇
  2013年   18篇
  2012年   12篇
  2011年   8篇
  2010年   9篇
  2009年   8篇
  2008年   13篇
  2007年   8篇
  2006年   8篇
  2005年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
1.
2.
This research focuses on the application of three soft computing techniques including Minimax Probability Machine Regression(MPMR),Particle Swarm Optimization based Artificial Neural Network(ANN-PSO)and Particle Swarm Optimization based Adaptive Network Fuzzy Inference System(ANFIS-PSO)to study the shallow foundation reliability based on settlement criteria.Soil is a heterogeneous medium and the involvement of its attributes for geotechnical behaviour in soil-foundation system makes the prediction of settlement of shallow a complex engineering problem.This study explores the feasibility of soft computing techniques against the deterministic approach.The settlement of shallow foundation depends on the parametersγ(unit weight),e0(void ratio)and CC(compression index).These soil parameters are taken as input variables while the settlement of shallow foundation as output.To assess the performance of models,different performance indices i.e.RMSE,VAF,R^2,Bias Factor,MAPE,LMI,U(95),RSR,NS,RPD,etc.were used.From the analysis of results,it was found that MPMR model outperformed PSO-ANFIS and PSO-ANN.Therefore,MPMR can be used as a reliable soft computing technique for non-linear problems for settlement of shallow foundations on soils.  相似文献   
3.
The paper presents the 3D finite element simulation of tidal flow and Sediment transport in the estuarine region of the Haihe river. The proposed model adopts sigma-transformation of the hydrodynamic and sediment transport equations. The hydrodynamic and sediment transport models are verified in case of a simple test problem for which analytical solutions are available. Finally the models are applied to muddy Haihe river estuary of North China and it is claimed that hydrodynamic and sediment transport models give a reliable comparison with the observed field data. However, there are certain discrepancies, and some reasonable questions regarding the present state-of-art, in the modeling of three-dimensional multilevel hydrodynamics and sediment transport, which are provided below for answer.  相似文献   
4.
— Seismic responses of weathered and non-weathered ridge models were simulated to study the ridge effects on the ground motion characteristics. The range of ridge slope from 19.98° to 45° was considered to produce a possible set of generalized results. 2.5-D modeling based on parsimonious staggered grid approximation of elastodynamic wave equations was adopted in simulations. Computed results reveal an increase of amplitude of incoming waves with both elevation and the slope of the ridge. Further, the characteristics of surface waves are highly ridge slope dependent. The analysis of responses of weathered and non-weathered ridge models reveals that ridge has caused a strong generation of surface waves near its top. The surface waves are not dominating on the top of the ridge but at some lower elevation. The increase of weathering of ridge further intensified the ridge effect. Analysis in frequency domain, based on spectral ratio method, does not indicate any pattern in the spectral amplification factor and is very much sensitive to slope, source focal mechanism and location. However, on an average there is a continuous decrease of amplification with slope in the vertical component and increase in the transverse component, and it is increasing in the radial component up to slope =38.0° and thereafter decreasing.  相似文献   
5.
—An algorithm has been developed to compute the dispersive and dissipative seismic response using FUTTERMAN’S (1962) third attenuation-dispersion relationship. In the computation, frequency-dependent velocity and quality factor Q have been used but in the case of the nondispersive synthetic seismogram, frequency-independent velocity has been used. The model’s parameters are density, phase velocity, quality factors and thicknesses of the layers. Dispersive and nondispersive synthetic seismograms have been computed with and without absorption for a layered earth geological model. Fast Fourier transform (FFT) technique has been adopted for converting the frequency domain response into the time domain. The frequency spacing, Δf = 0.976?Hz, has been considered to avoid the aliasing effect. The results have revealed changes in the reflected waveforms in the frequency domain as well as in the time domain for absorption and dispersion cases. It is also concluded that dispersion reduces the arrival time and this effect is increasing with the travel time. The effect of constant Q on the seismic response has also been studied.  相似文献   
6.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号