首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   9篇
  国内免费   3篇
测绘学   3篇
大气科学   16篇
地球物理   51篇
地质学   76篇
海洋学   46篇
天文学   25篇
综合类   2篇
自然地理   3篇
  2023年   2篇
  2021年   5篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   8篇
  2010年   15篇
  2009年   12篇
  2008年   15篇
  2007年   12篇
  2006年   13篇
  2005年   14篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1970年   3篇
排序方式: 共有222条查询结果,搜索用时 500 毫秒
1.
Evidence is presented of a lateral variation in differential stress during metamorphism along a regional metamorphic belt on the basis of the proportion of microboudinaged piemontite grains (p) in a quartz matrix in metacherts. It is proposed that p is a practical indicator of relative differential stress. Analysis of 123 metacherts from the 800 km long Sambagawa metamorphic belt, Japan, reveals that p‐values range from < 0.01 to 0.7 in this region. Most samples from Wakayama in the mid‐belt area have p‐values of 0.4–0.6, whereas those from western Shikoku have p‐values of < 0.1. This difference cannot be explained by variations in metamorphic temperature, and is instead attributed to a regional, lateral variation in differential stress during metamorphism.  相似文献   
2.
To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.  相似文献   
3.
Two processes are generally explained as causes of temporal changes in the stoichiometric silicon/nitrogen (Si/N) ratios of sinking particles and of nutrient consumption in the surface water during the spring diatom bloom: (1) physiological changes of diatom under the stress of photosynthesis of diatom and (2) differences of regeneration between silicon and nitrogen. We investigated which process plays an important role in these changes using a one-dimensional ecosystem model that explicitly represents diatom and the other non-silicious phytoplankton. The model was applied to station A7 (41°30′ N, 145°30′ E) in the western North Pacific, where diatom regularly blooms in spring. Model simulations show that the Si/N ratios of the flux exported by the sinking particles at 100 m depth and of nutrient consumptions in the upper 100 m surface water have their maxima at the end of the spring diatom bloom, the values and timings of which are significantly different from each other. Analyses of the model results show that the differences of regeneration between silicon and nitrogen mainly cause the temporal changes of the Si/N ratios. On the other hand, the physiological changes of diatoms under stress can hardly cause these temporal changes, because the effect of the change in the diatom's uptake ratio of silicon to nitrogen is cancelled by that in its sinking rate.  相似文献   
4.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
JGOFS has revealed the importance of marine biological activity to the global carbon cycle. Ecological models are valuable tools for improving our understanding of biogeochemical cycles. Through a series of workshops, the North Pacific Marine Science Organization (PICES) developed NEMURO (North Pacific Ecosystem Model Understanding Regional Oceanography) a model, specifically designed to simulate the lower trophic ecosystem in the North Pacific Ocean. Its ability to simulate vertical fluxes generated by biological activities has not yet been validated. Here compare NEMURO with several other lower trophic level models of the northern North Pacific. The different ecosystem models are each embedded in a common three-dimensional physical model, and the simulated vertical flux of POM and the biomass of phytoplankton are compared. The models compared are: (1) NEMURO, (2) the Kishi and Nakata Model (Kishi et al., 1981), (3) KKYS (Kawamiya et al., 1995, 2000a, 2000b), and (4) the Denman model (Denman and Peña, 2002). With simple NPZD models, it is difficult to describe the production of POM (Particulate Organic Matter) and hence the simulations of vertical flux are poor. However, if the parameters are properly defined, the primary production can be well reproduced, even though none of models we used here includes iron limitation effects. On the whole, NEMURO gave a satisfactory simulation of the vertical flux of POM in the northern North Pacific.  相似文献   
6.
The content of selenium and its chemical form in sea water   总被引:1,自引:0,他引:1  
By using the new fluorometric method of determination of the total selenium ( Se), Se (IV) and Se (VI), the content of selenium in sea weter was determined in the western North Pacific. Results showed that the content of Se in surface water ranged from 0.06 to 0.12g l–1, while in deeper layers, the content increased to 0.20g l–1. It was found that Se (IV) showed rather uniform distribution with depth, while Se (VI) increased with depth to about three times that in the surface. The ratio of Se (IV) to the Se ranged from 0.5 to 0.8 in the surface and 0.4 to 0.6 in the deep. The coexistence of the hexa- and tetravalent ions of selenium was confirmed both in surface and deep layers. Some results of observations on the content of selenium in the coastal areas of Japan were also reported.  相似文献   
7.
On the Polyps of the Common Jellyfish Aurelia aurita in Kagoshima Bay   总被引:1,自引:0,他引:1  
There is the natural habitat of polyps of the common jellyfish Aurelia aurita in the Taniyama area, Kagoshima Bay. We examined the attachment substrata, density, colony structure and strobilation of the polyps. The polyps were observed only on the horizontal undersurface of floating piers. They attached specifically to Mytilus shells, solitary ascidians, calcareous polychaete tubes, muddy amphipod tubes and the gap space that fouling animals peeled off the substrata. The polyp colonies were distributed in patches. Spatial distribution patterns of the polyps within their colonies were uniform. Strobilation occurred during late December to March, when water temperatures were 16–17°C, and a large number of ephyrae were released. An increase in man-made structures such as floating piers in coastal areas may lead to bloomings of Aurelia aurita medusae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
9.
We numerically study the dynamic interaction of propagating cracks. It is assumed that propagating cracks can nucleate and drive subsidiary cracks because of shear strain enhancement near the propagating crack tips. The critical strain fracture criterion is assumed in the analysis. Intense interaction is expected to occur among the cracks. All the cracks are assumed to be parallel and antiplane strain deformation is assumed in the computation.In the interaction of two non-coplanar cracks, a strain shadow is formed in the neighborhood of each crack because of the strain release by the introduction of the crack. The growth of each crack is accelerated when the propagating tips of each crack are outside of the strain shadow of the other crack. In general, the crack tips enter the strain shadow, and the crack tips decelerate. The calculation shows that only one of the two cracks can continue to grow, and the other's growth is decelerated and arrested. If we can assume that the suite of cracks interact in a pairwise manner only, then this may suggest that only a limited number of cracks can continue to grow during the final stage of the rupture process. Hence the crack interaction causes complexity in dynamic earthquake faulting. The concepts of barrier and asperity have been employed by many researchers for the interpretation of complex seismic wave data. However, the physical realities of such concepts are obscure. Our calculations show that dynamic crack interactions can produce barriers and asperities in some cases; the crack tip deceleration or arrest due to the interactions among non-coplanar cracks can be interpreted as being due to a barrier. The dynamic coalescence among the coplanar cracks can be regarded as an asperity.Umeda found a localized area that strongly radiates high-frequency seismic waves in the epicentral areas of some large shallow earthquakes. He defined this as an earthquake bright spot. Our analysis implies that only a limited number of cracks continue to grow when many interactive cracks nucleate, and that all other cracks stop extending soon after nucleation. Hence, if the nucleation and termination of several cracks occur in a localized area, it will be observed seismologically as an earthquake bright spot. This is because it is theoretically known that the sudden termination of crack growth and dynamic crack coalescence efficiently emits high-frequency elastic waves.  相似文献   
10.
Dendritic cordierite occurs in argillaceous hornfels from the Toki area, Gifu Prefecture, Japan. The cordierite crystal consists of c-arms elongated parallel to the c-axes and a-arms perpendicular to the c-axis. The latter arms could be divided into six kinds of untwinned a-arms with different growth directions elongated parallel to the respective a-axis and twinned a-arms elongated parallel to the (110) twin plane. A-arms branch out from c-arms or other a-arms with different growth directions and c-arms sometimes branch out from a-arms, leading to a tree-like structure. Each of the c-arms contains three kinds of domains related by a three-fold axis about the c-axis. These domains are irregularly distributed without any relation to the shape of the c-arm and the domain boundaries are of zigzag shape. This domain arrangement suggests that c-arms grew as hexagonal cordierite and were later transformed into orthorhombic cordierite. The fact that each untwinned a-arm has a fixed growth direction to its orientation suggests that the a-arms grew as an orthorhombic cordierite. From the growth directions of c- and a-arms, orthorhombic and hexagonal phases are considered to grow preferentially along the c- and a-axes, respectively. The branching of a new arm is explained by nucleation on an old arm with a different preferred growth direction. The preferential growth is discussed in terms of a significant chemical potential gradient of the cordierite component. This has been preserved in the mineral zoning observed in the matrix around the cordierite porphyroblast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号