首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地质学   4篇
综合类   1篇
自然地理   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Station recording air temperature (Ta) has limited spatial coverage, especially in unpopulated areas. Since temperature can change greatly both spatially and temporally, stations data are often inadequate for meteorology and subsequently climatology studies. Time series of moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (Ts) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM), albedo from Era-Interim and meteorological data from 2006 to 2015, were used to estimate daily mean air temperature over Iran. Geographically weighted regression was applied to compare univariate and multivariate model accuracy. In the first model, which only interfered with land surface temperature (LST), the results indicate a weak performance with coefficient of determination up to 91% and RMSE of 1.08 to 2.9 °C. The mean accuracy of a four-variable model (which used LST, elevation, slope, NDVI) slightly increased (6.6% of the univariate model accuracy) when compared to univariate model. RMSE dropped by 19% of the first model. By addition albedo in the third model, the coefficient of determination increased significantly. This increase was 32% of the univariate model and 23.75% of the 4-variable model accuracy. The statistical comparison between the three models revealed that there is significant improvement in air estimation by applying the geographically weighted regression (GWR) method with interfering LST, NDVI, elevation, slope, and albedo with mean absolute RMSE of 0.62 °C and mean absolute R2 of 0.99. In order to better illustrate the third model, t values were spatially mapped at 0.05 level.  相似文献   
2.
Cloud types have a substantial influence on precipitation. This paper presents a study of the monthly variations of daytime different cloud types over Iran using data collected from Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra during 2001–2015, MODIS aboard Aqua during 2002–2015, International Satellite Cloud Climatology Project (ISCCP) H-series cloud type data during 2001–2009 and precipitation rate associated with different cloud types using Tropical Rainfall Measuring Mission (TRMM) satellite products during 2001–2009. Different cloud types were determined using MODIS cloud optical thickness and cloud top pressure data based on ISCCP algorithm. The results showed that stratocumulus and cumulus clouds have maximum occurrence frequency over marine areas especially southern seas. The maximum frequency of nimbostratus and deep convective occurrence occurred over mountainous regions particularly at the time of Aqua overpass and cirrus and cirrostratus are observed over southeast of Iran during warm months due to monsoon system. Altostratus cloud is extended in each month except January, at the time of Terra overpass while nimbostratus is seen at the time of Aqua overpass during warm months in the study area. Cumulus and altocumulus clouds have shown remarkable frequency in all months especially over marine regions during warm and fall months. The higher value of precipitation rate is related to altostratus with a rate approximately 7 mm/h at the time of Terra overpass during April. Altostratus has the maximum recorded precipitation rate except in Nov., Dec., Sep., and Jan. at the time of Terra overpass, whereas the maximum precipitation rate is linked to nimbostratus cloud activity (up to 5 mm/h) except for March, April, and Sep. at the time of Aqua overpass. Deep convective (up to 1.32 mm/h), cirrostratus (up to 1.11 mm/h), and cirrus (0.02 mm/h) are observed only in warm months. The results were compared with ISCCP cloud types so that precipitation rate classified from low to high and Spearman rank correlation was calculated. The results showed good agreement between these two cloud type data; however, there were few notable difference between them.  相似文献   
3.
4.
Countries like Iran, which are geographically situated in a rather arid and warm regions, will suffer more from global warming than countries located in humid and semi-humid regions. In such environments, analyzing the variations of mountain glaciers can reveal several aspects of climate change patterns more efficiently in comparison to the other geo-indicators. The present study reports some evidence of changes for Alamkouh glacier between 1955 and 2010 based on several mediums to high-resolution satellite images. Considering that most part of the Alamkouh glacier is covered by debris and delineating its actual area is not possible, planimetric change analysis was restricted to the clean-ice regions. The object-oriented classification approach was used to estimate the clean ice areas. This technique takes into account the shapes of the features along with their spectral patterns. Results revealed that clean ice regions of Alamkouh glacier shrank since 1955 with an overall area reduction of about 59 %. Although the general observed trend is a clean ice area reduction, some advancement was detected over the period from 2000 to 2010. During 1992–2000, the maximum reduction in the clean ice area was observed (0.08 km2.a?1). However, clean ice area of the case study has partially increased about 0.028 km2.a?1 from 2000 to 2010. Supra-glacial lake change analysis illustrated that at the surface of the glacier, lakes have been enlarged remarkably in the past 55 years (about 4.75 times greater). In addition, clean ice area and the surface area of supra-glacial lakes oscillated in compliance with each other. The findings revealed that the maximum expansion of supra-glacial lake occurred during 1992–2000, which demonstrate the glacier maximum reduction during this period. This shrinkage in the Alamkouh glacier caused an extensive glacial lake outburst flood in Jun 2011. The results of this study agree with documented changes in other mountain glaciers located in arid and semi-arid environments and they also confirm the application of mountain glaciers in climate variations monitoring over such regions.  相似文献   
5.
In this study, monthly, quarterly, and annual frequency data of thunderstorm days of 25 long-term synoptic weather stations during the period from 1960 to 2010 were analyzed applying Ward’s Hierarchical Cluster Analysis (WHCA) Method and Kriging Geostatistical Method (KGM). The results of temporal analysis of Thunderstorm Days (TD) in Iran showed that in terms of frequency, seasonal occurrence of this phenomenon is mostly in transitional seasons of spring and autumn. The results of WHCA to find homogeneous places in terms of synchronization and timing of TD reflects the fact that there are five clusters with similar memberships, including the North West, West, the southern part, northern, central, and northeastern parts, eastern regions, and center of Iran, and in this classification, the frequency of occurrence of TD reduces in the same order the regions are mentioned. In contrast, the lowest frequency of TD is in summer and winter seasons. In this study, it was found that among various deterministic and geostatistical methods, KGM is the most suitable one for thunderstorms hazard zonation and for classifying the different regions based on thunderstorm occurrence; WHCA is more suitable than other methods. The results of spatial analysis of thunderstorms point to the fact that the core of the mentioned thunderstorms is mostly in mountainous areas, particularly, highlands of North West and West of Iran. With regard to place, in the West part of the country, especially North West (Tabriz, Oroomieh, and Zanjan stations) and West, thunderstorms have higher frequencies, while the South East, South, Central, and eastern regions are less affected by the thunderstorm hazard.  相似文献   
6.
7.
The majority of cities are rapidly growing. This makes the monitoring and modeling of urban change’s spatial patterns critical to urban planners, decision makers, and environment protection activists. Although a wide range of methods exists for modeling and simulating urban growth, machine learning (ML) techniques have received less attention despite their potential for producing highly accurate predictions of future urban extents. The aim of this study is to investigate two ML techniques, namely radial basis function network (RBFN) and multi-layer perceptron (MLP) networks, for modeling urban change. By predicting urban change for 2010, the models’ performance is evaluated by comparing results with a reference map and by using a set of pertinent statistical measures, such as average spatial distance deviation and figure of merit. The application of these techniques employs the case study area of Mumbai, India. The results show that both models, which were tested using the same explanatory variables, produced promising results in terms of predicting the size and extent of future urban areas. Although a close match between RBFN and MLP is observed, RBFN demonstrates higher spatial accuracy of prediction. Accordingly, RBFN was utilized to simulate urban change for 2020 and 2030. Overall, the study provides evidence that RBFN is a robust and efficient ML technique and can therefore be recommended for land use change modeling.  相似文献   
8.
This study reports on the clean ice area and surface elevation changes of the Khersan and Merjikesh glaciers in the north of Iran between 1955 and 2010 based on several high to medium spatial resolution remote sensing data.The object-oriented classification technique has been applied to nine remote sensing images to estimate the debris-free areas.The satellite-based analysis revealed that the clean ice areas of Khersan and Merjikesh glaciers shrank since 2010 with an overall area decrease of about 45% and 60% respectively.It means that the dramatic proportions of 1955 glaciers surface area are covered with debris during the last five decades.Although the general trend is a clean ice area decrease,some advancement is observed over the period of 1997-2004.During 1987-1991 the maximum decrease in the clean ice area was observed.However,the clean ice area had steadily increased between 1997 and 2010.To quantify the elevation changes besides the debris-free change analysis,several Digital Elevation Models(DEMs) were extracted from aerial photo(1955),topographic map(1997),ASTER image(2002) and Worldview-2 image(2010) and after it a 3-D Coregistration and a linear relationship adjustments techniques were used to remove the systematic shifts and elevation dependent biases.Unlike the sinusoidal variation of our case studies which was inferred from planimetric analysis,the elevation change results revealed that the glacier surface lowering has occurred during 1955-2010 continuously without any thickening with the mean annual thinning of about 0.4 ± 0.04 m per year and 0.3 ± 0.026 m per year for Khersan and Merjikesh glaciers,respectively.The maximum thinning rate has been observed during 1997-2002(about 1.1 ± 0.09 per year and 0.96 ± 0.01 mper year,respectively),which was compatible partially with debris-free change analysis.The present result demonstrates that although in debris-covered glaciers clean ice area change analysis can illustrate the direction of changes(retreat or advance),due to the high uncertainty in glacier area delineation in such glaciers,it cannot reveal the actual glacier changes.Thus,both planimetric and volumetric change analyses are very critical to obtain accurate glacier variation results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号