首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1881篇
  免费   86篇
  国内免费   31篇
测绘学   47篇
大气科学   200篇
地球物理   418篇
地质学   726篇
海洋学   158篇
天文学   271篇
综合类   5篇
自然地理   173篇
  2023年   5篇
  2022年   10篇
  2021年   33篇
  2020年   42篇
  2019年   28篇
  2018年   53篇
  2017年   50篇
  2016年   84篇
  2015年   52篇
  2014年   77篇
  2013年   127篇
  2012年   62篇
  2011年   121篇
  2010年   97篇
  2009年   108篇
  2008年   105篇
  2007年   108篇
  2006年   108篇
  2005年   76篇
  2004年   82篇
  2003年   59篇
  2002年   62篇
  2001年   44篇
  2000年   34篇
  1999年   37篇
  1998年   28篇
  1997年   22篇
  1996年   21篇
  1995年   16篇
  1994年   15篇
  1993年   18篇
  1992年   10篇
  1991年   19篇
  1990年   16篇
  1989年   15篇
  1987年   14篇
  1986年   18篇
  1985年   9篇
  1984年   6篇
  1983年   14篇
  1982年   13篇
  1981年   15篇
  1980年   12篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
排序方式: 共有1998条查询结果,搜索用时 31 毫秒
1.
2.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
3.
4.
5.
Veined lithologies are formed by fracturing and sealing processes, with the veins representing former fluid conduits through the rock. Although detailed fieldwork and numerical simulations have provided a better understanding of vein growth, few studies have attempted to seal fractures and generate veins experimentally. In this pilot study, we subjected fractured quartzite to temperature gradients of 45–125 °C under hydrothermal conditions in a static fluid, with the aim of precipitating secondary quartz in the cooler portions of the fracture. Results show that secondary quartz precipitates due to the imposed temperature gradient, causing the initial fracture to seal locally. Although no systematic sealing pattern was observed along the fracture, samples subjected to higher temperatures exhibit a smaller fracture width and appear to have reacted more extensively. Electron microprobe mapping visualizes the spatial distribution of secondary quartz, which contains elevated concentrations of aluminium.  相似文献   
6.
This paper studies the long period variations of the eccentricity vector of the orbit of an artificial satellite, under the influence of the gravity field of a central body. We use modified orbital elements which are non-singular at zero eccentricity. We expand the long periodic part of the corresponding Lagrange equations as power series of the eccentricity. The coefficients characterizing the differential system depend on the zonal coefficients of the geopotential, and on initial semi-major axis, inclination, and eccentricity. The differential equations for the components of the eccentricity vector are then integrated analytically, with a definition of the period of the perigee based on the notion of “free eccentricity”, and which is also valid for circular orbits. The analytical solution is compared to a numerical integration. This study is a generalization of (Cook, Planet. Space Sci., 14, 1966): first, the coefficients involved in the differential equations depend on all zonal coefficients (and not only on the very first ones); second, our method applies to nearly circular orbits as well as to not too eccentric orbits. Except for the critical inclination, our solution is valid for all kinds of long period motions of the perigee, i.e., circulations or librations around an equilibrium point.  相似文献   
7.
QUEST on DASI is a ground-based, high-sensitivity, high-resolution (ℓmax2500) experiment designed to map CMB polarization at 100 and 150 GHz and to measure the power spectra from E-modes, B-modes from lensing of the CMB, and B-modes from primordial gravitational waves. The experiment comprises a 2.6 m Cassegrain optical system, equipped with an array of 62 polarization-sensitive bolometers (PSBs), located at the South Pole. The instrument is designed to minimize systematic effects; features include differencing of pairs of orthogonal PSBs within a single feed, a rotatable achromatic waveplate, and axisymmetric rotatable optics. In addition the South Pole location allows both repeatable and highly controlled observations. QUEST on DASI will commence operation in early 2005.  相似文献   
8.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号