首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
地质学   5篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
One important step in binary modeling of environmental problems is the generation of absence-datasets that are traditionally generated by random sampling and can undermine the quality of outputs.To solve this problem,this study develops the Absence Point Generation(APG)toolbox which is a Python-based ArcGIS toolbox for automated construction of absence-datasets for geospatial studies.The APG employs a frequency ratio analysis of four commonly used and important driving factors such as altitude,slope degree,topographic wetness index,and distance from rivers,and considers the presence locations buffer and density layers to define the low potential or susceptibility zones where absence-datasets are gener-ated.To test the APG toolbox,we applied two benchmark algorithms of random forest(RF)and boosted regression trees(BRT)in a case study to investigate groundwater potential using three absence datasets i.e.,the APG,random,and selection of absence samples(SAS)toolbox.The BRT-APG and RF-APG had the area under receiver operating curve(AUC)values of 0.947 and 0.942,while BRT and RF had weaker per-formances with the SAS and Random datasets.This effect resulted in AUC improvements for BRT and RF by 7.2,and 9.7%from the Random dataset,and AUC improvements for BRT and RF by 6.1,and 5.4%from the SAS dataset,respectively.The APG also impacted the importance of the input factors and the pattern of the groundwater potential maps,which proves the importance of absence points in environmental bin-ary issues.The proposed APG toolbox could be easily applied in other environmental hazards such as landslides,floods,and gully erosion,and land subsidence.  相似文献   
2.
One important tool for water resources management in arid and semi-arid areas is groundwater potential mapping. In this study, four data-mining models including K-nearest neighbor (KNN), linear discriminant analysis (LDA), multivariate adaptive regression splines (MARS), and quadric discriminant analysis (QDA) were used for groundwater potential mapping to get better and more accurate groundwater potential maps (GPMs). For this purpose, 14 groundwater influence factors were considered, such as altitude, slope angle, slope aspect, plan curvature, profile curvature, slope length, topographic wetness index (TWI), stream power index, distance from rivers, river density, distance from faults, fault density, land use, and lithology. From 842 springs in the study area, in the Khalkhal region of Iran, 70 % (589 springs) were considered for training and 30 % (253 springs) were used as a validation dataset. Then, KNN, LDA, MARS, and QDA models were applied in the R statistical software and the results were mapped as GPMs. Finally, the receiver operating characteristics (ROC) curve was implemented to evaluate the performance of the models. According to the results, the area under the curve of ROCs were calculated as 81.4, 80.5, 79.6, and 79.2 % for MARS, QDA, KNN, and LDA, respectively. So, it can be concluded that the performances of KNN and LDA were acceptable and the performances of MARS and QDA were excellent. Also, the results depicted high contribution of altitude, TWI, slope angle, and fault density, while plan curvature and land use were seen to be the least important factors.  相似文献   
3.
The purpose of current study is to produce groundwater qanat potential map using frequency ratio (FR) and Shannon's entropy (SE) models in the Moghan watershed, Khorasan Razavi Province, Iran. The qanat is basically a horizontal, interconnected series of underground tunnels that accumulate and deliver groundwater from a mountainous source district, along a water- bearing formation (aquifer), and to a settlement. A qanat locations map was prepared for study area in 2013 based on a topographical map at a 1:50,000-scale and extensive field surveys. 53 qanat locations were detected in the field surveys. 70 % (38 locations) of the qanat locations were used for groundwater potential mapping and 30 % (15 locations) were used for validation. Fourteen effective factors were considered in this investigation such as slope degree, slope aspect, altitude, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Using the above conditioning factors, groundwater qanat potential map was generated implementing FR and SE models, and the results were plotted in ArcGIS. The predictive capability of frequency ratio and Shannon's entropy models were determined by the area under the relative operating characteristic curve. The area under the curve (AUC) for frequency ratio model was calculated as 0.8848. Also AUC for Shannon's entropy model was 0.9121, which depicts the excellence of this model in qanat occurrence potential estimation in the study area. So the Shannon's entropy model has higher AUC than the frequency ratio model. The produced groundwater qanat potential maps can assist planners and engineers in groundwater development plans and land use planning.  相似文献   
4.
Natural Resources Research - Lack of water resources is a common issue in many countries, especially in the Middle East. Flood spreading project (FSP) is an artificial recharge technique, which is...  相似文献   
5.
6.
Forest fire is known as an important natural hazard in many countries which causes financial damages and human losses; thus, it is necessary to investigate different aspects of this phenomenon. In this study, performance of four models of linear and quadratic discriminant analysis (LDA and QDA), frequency ratio (FR), and weights-of-evidence (WofE) was investigated to model forest fire susceptibility in the Yihuang area, China. For this purpose, firstly, a forest fire locations map was prepared implementing MODIS satellite images and field surveys. Then, it was classified into two groups including training (70%) and validation (30%) by a random algorithm. In addition, 13 forest fire effective factors were prepared and used such as slope degree, slope aspect, altitude, Topographic Wetness Index (TWI), plan curvature, land use, Normalized Difference Vegetation Index (NDVI), annual rainfall, distance from roads and rivers, wind effect, annual temperature, and soil texture. Using the training dataset and effective factors, LDA, QDA, FR, and WofE models were applied and forest fire susceptibility maps were prepared. Finally, area under the curve (AUC) of receiver operating characteristics (ROC) was implemented for investigating the performance of the models. The results depicted that WofE had the best performance (AUC = 82.2%), followed by FR (AUC = 80.9%), QDA (AUC = 78.3%), and LDA (AUC = 78%), respectively. The results of this study showed the high contribution of altitude, slope degree, and temperature. On the other hand, it was seen that slope aspect and soil had the lowest importance in forest fire susceptibility mapping. From the AUC results, it can be concluded that FR, WofE, LDA, and QDA had acceptable performance and could be used for forest fire susceptibility mapping at the regional scale.  相似文献   
7.
Most part of Iran is arid and semi-arid; thus in most parts of the region, groundwater is the only source of water. This research presents a method based on a spatial multi-criterion evaluation (SMCE) for designing possible sites of underground dams and ranks them according to their suitability. The method was tested for siting underground dams in the Alborz Province, Iran. At first, screening algorithm was applied using exclusionary criteria, and thirty-one potential areas were recognized in the study area. In the next step, a suitable gorge or valley was recognized using the combination of basic maps and extensive field surveys (long axis of tank level) in each potential area. Subsequently, the analytical hierarchy process was used as a powerful tool for decision-making in the SMCE in order to evaluate different criteria for underground dam sites. SMCE techniques were then applied to combine the criteria, and obtain a suitability map in the study area. These sites were then compared and ranked according to their main criteria such as water, storage, axis and socio-economics. All these criteria were assessed through geographical information system modelling. This method shows passable results and could be used for site selection of underground dams in other regions of Iran.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号