首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   11篇
  国内免费   1篇
测绘学   2篇
大气科学   26篇
地球物理   45篇
地质学   53篇
海洋学   15篇
天文学   46篇
自然地理   21篇
  2022年   3篇
  2021年   11篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   7篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   10篇
  2011年   9篇
  2010年   9篇
  2009年   14篇
  2008年   4篇
  2007年   14篇
  2006年   8篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2000年   9篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1965年   1篇
  1964年   1篇
  1912年   1篇
  1908年   1篇
  1907年   1篇
  1905年   1篇
  1899年   1篇
  1897年   1篇
  1895年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
1.
The use of oil-based drilling muds has been discouraged in hydrocarbon exploration and production in the marine environment but these muds are presently being used to a considerable degree in the United Kingdom and Norwegian sectors of the North Sea. Field studies in the North Sea have demonstrated only localized impacts around individual drilling sites,1,2 even including those sites where ‘toxic’ diesel oils were employed as base fluids in drilling muds. Yet the question of disposal of cuttings contaminated with oil from drilling muds remains somewhat controversial. The induction of mixed-function oxygenases (MFO) has been validated on a number of occasions in the field as a sensitive index of low level hydrocarbon exposure (reviewed by Payne),3 including sites in the North Sea where diesel-based muds were used.4 The present study demonstrates that any potential for induction by hydrocarbon contaminated cuttings will probably be reduced by substitution of low-aromatic base oils for diesel in drilling mud formulations.  相似文献   
2.
In 1967, the original Walker Branch Watershed (WBW) project was established to study elemental cycling and mass balances in a relatively unimpacted watershed. Over the next 50+ years, findings from additional experimental studies and long-term observations on WBW advanced understanding of catchment hydrology, biogeochemistry, and ecology and established WBW as a seminal site for catchment science. The 97.5-ha WBW is located in East Tennessee, USA, on the U.S. Department of Energy's Oak Ridge Reservation. Vegetation on the watershed is characteristic of an eastern deciduous, second-growth forest. The watershed is divided into two subcatchments: the West Fork (38.4 ha) and the East Fork (59.1 ha). Headwater streams draining these subcatchments are fed by multiple springs, and thus flow is perennial. Stream water is high in base cations due to weathering of dolomite bedrock and nutrient concentrations are low. Long-term observations of climate, hydrology, and biogeochemistry include daily (1969–2014) and 15-min (1994–2014) stream discharge and annual runoff (1969–2014); hourly, daily, and annual rainfall (1969–2012); daily climate and soil temperature (1993–2010); and weekly stream water chemistry (1989–2013). These long-term datasets are publicly available on the WBW website (https://walkerbranch.ornl.gov/long-term-data/ ). While collection of these data has ceased, related long-term measurements continue through the National Ecological Observatory Network (NEON), where WBW is the core terrestrial and aquatic site in the Appalachian and Cumberland Plateau region (NEON's Domain 7) of the United States. These long-term datasets have been and will continue to be important in evaluating the influence of climatic and environmental drivers on catchment processes.  相似文献   
3.
Integrated land use–transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it’s likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.  相似文献   
4.
In shallow estuaries with strong river influence, the short residence time and pronounced gradients generate an environment for plankton that differs substantially in its dynamics from that of the open ocean, and the question arises “How is phytoplankton biomass affected?” This study assesses the small-scale spatial and temporal distribution of phytoplankton in Apalachicola Bay, a shallow bar-built estuary in the Florida Panhandle. Phytoplankton peaks were characterized to gain insights into the processes affecting spatial heterogeneity in biomass. Chlorophyll a (Chl a) distribution at 50-m spatial resolution was mapped using a flow-through sensor array, Dataflow©, operated from a boat that sampled four transects across the bay every 2 weeks for 16 months. Chl a peaks exceeding background concentrations had an average width of 1.3?±?0.7 km delineated by an average gradient of 3.0?±?6.0 μg Chl a L?1 km?1. Magnitude of E-W wind, velocity of N-S wind, tidal stage, and temperature affected peak characteristics. Phytoplankton contained in the peaks contributed 7.7?±?2.7% of the total integrated biomass observed along the transects during the study period. The river plume front was frequently a location of elevated Chl a, which shifted in response to river discharge. The results demonstrate that despite the shallow water column, river flushing, and strong wind and tidal mixing, distinct patchiness develops that should be taken into consideration in ecological studies and when assessing productivity of such ecosystems.  相似文献   
5.
Systematic planning for conservation is highly regarded but relies on spatially explicit data that are lacking in many areas of conservation concern. The decision support tool Marxan is applied to a reef system in the central Philippines where 30 marine protected areas (MPAs) have been established in communities without much use of biophysical data. The intent was to explore how Marxan might assist with the legally required expansion to protect 15% of marine waters, and how existing MPAs might affect that process. Results show that biophysical information alone did not provide much guidance in identifying patterns of conservation importance in areas where the data are poor. Socioeconomic data were needed to distinguish among possible areas for protection; but here, as elsewhere in marine environments, the availability of such data was very limited. In the final analysis, local knowledge and integrated understanding of socioeconomic realities may offer the best spatially explicit information. The 30 existing MPAs, which encompassed a small proportion of the reef system, did not limit future options in developing a suite of MPAs on a broader scale. Rather, they appeared to generate the support for MPAs that is obligatory for any larger zoning effort. In summary, establishing MPAs based on community-driven criteria has biological and social value, but efforts should be made to collect ecological and socioeconomic data to guide the continued creation of MPAs.  相似文献   
6.
This paper explores the relationship between temperature, evaporation and soil moisture using a planetary boundary layer (PBL) model. It focuses on illustrating and quantifying the effect of soil moisture on the evolution of daytime temperatures. A simple convective PBL model coupled with the Penman–Monteith (PM) equation is used to estimate evapotranspiration. Following calibration and sensitivity analysis, the model was used to simulate the relative impact of dry and wet soil moisture conditions on daytime temperatures by changing the surface resistance parameter in the PM equation. It was found that the maximum temperature that can be reached during a day is constrained by the amount of soil moisture and the available net radiation, confirming previously published results. Higher temperatures can be reached with greater net radiation and dry soil moisture conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
Recent advances in sample preparation techniques and mass spectrometry have fostered more routine oxygen isotope analysis of aquatic cellulose in lake sediment cores, a proxy for lake water oxygen isotope history. These methodological developments have significantly increased the feasibility of incorporating this approach into high-resolution, multi-site, and multi-proxy studies, which are frequently necessary to answer complex hydrological, hydroecological and hydroclimatic questions requiring a paleoenvironmental perspective. Direct translation of lake sediment aquatic cellulose oxygen isotope composition into lake water oxygen isotope composition offers appreciable opportunity for quantitative paleohydrological reconstructions, as evidenced by studies conducted over the past 15 years that span Holocene and pre-historical timescales.  相似文献   
8.
Mussels, Mytilus trossulus (average shell length 43+/-0.8 mm), were sampled from a beach in Alaska that received untreated sewage for several years, a second beach adjacent to a secondary wastewater outfall, and two nearby reference beaches. Survival time in air, byssal thread production rate, and prevalence of trematode parasites were determined for each group. Tolerances to aerial exposure was significantly lower (P<0.05) at both sewage outfall sites than at the reference sites. Mussels exposed to untreated sewage produced fewer byssal threads and had a significantly higher prevalence of encysted trematodes than mussels from the other beaches, including the secondary wastewater site. Survival in air, byssal thread production, and trematode prevalence in mussels may be useful indicators in evaluating the longterm health of beaches exposed to sewage.  相似文献   
9.
Estimates of spatial and temporal variations in suspended sand concentrations (SSC) made with a multi-transducer Acoustic Backscatter Sensor (ABS) under a repeated wave group over a mobile rippled bed in the wave research flume at the National Hydraulics Laboratory in Ottawa, Canada, reveal an number of complex and intriguing patterns. Ensemble averages of 8 nearly identical wave groups provided much more robust estimates of SSC and allowed a detailed examination of the wave group effects. The largest SSC near the bed (< 0.10 m) occurs in phase with the largest waves in the group. Above approximately 0.10 m elevation, SSC lags behind the near bed SSC by as much as 2–3 waves; introducing significant curvature (on a semi-log plot) to the SSC profile. The log linear segments of the SSC profile grow and decay systematically on the scale of the wave group. The range in lengths of log-linear profile segments ( 0.03–0.355 m) suggest that the boundary layer thickness also fluctuates throughout the passage of the wave group. Furthermore, there are significant variations in the patterns of SSC, which occur under the largest and smallest waves in the group. Under the largest waves vertical bands of alternating high and low SSC produce an intra-wave modulation in the upper water column ( 0.075–0.30 m). The equivalent horizontal excursion of these bands scales to the ripple length. Under the smaller waves the intra-wave modulation of the SSC disappears and is replaced by temporally homogenous suspension that expands vertically through several individual wave cycles. The former pattern of homogenous suspension appears to be associated with growth of a boundary layer due to the persistent uni-directional horizontal flow during this part of the group together with the persistence of antecedent bed generated turbulence and vorticity which maintains the suspension. The latter pattern of bands of high and low SSC indicates a strong temporal and spatial constraint on the SSC (phase coupling) induced by the presence of the bedforms which may be enhanced by strong reversals in both flow and vorticity under the large waves in the group.  相似文献   
10.
A laboratory experiment was conducted to determine whether retention of waterborne sand by salt marsh cordgrass, Spartina alterniflora Loisel, is directly related to the number of stems per unit area. Waves generated in a trough washed over a sloping beach planted with S. alterniflora sprigs: a range of stem densities (0–108 stems/m2) was examined in separate trials. The amount of sand accumulated after 60 waves is a positive nonlinear function of stem density. The greatest accretion coincided with the highest stem density tested. Shape of the beach profile was also strongly influenced by the number of stems per m2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号