首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   1篇
地质学   8篇
自然地理   3篇
  2020年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Natural Resources Research - Carbon capture and storage is part of Canada’s climate change action plan to reduce greenhouse gas emissions. The Containment and Monitoring Institute Field...  相似文献   
2.
On the basis of one-dimensional theoretical water flow model, we demonstrate that the groundwater level variation follows a pattern similar to recharge fluctuation, with a time delay that depends on the characteristics of aquifer, recharge pattern as well as the distance between the recharge and observation locations. On the basis of a water budget model and the groundwater flow model, we propose an empirical model that links climatic variables to groundwater level. The empirical model is tested using a partial data set from historical records of water levels from more than 80 wells in a monitoring network for the carbonate rock aquifer, southern Manitoba, Canada. The testing results show that the predicted groundwater levels are very close to the observed ones in most cases. The overall average correlation coefficient between the predicted and observed water levels is 0.92. This proposed empirical statistical model could be used to predict variations in groundwater level in response to different climate scenarios in a climate change impact assessment.  相似文献   
3.
彩虹地区存在两类烃源岩,一类形成于深水高盐蒸发环境,另一类形成于较浅水碳酸盐环境。采用多元统计方法对本区来自不同油蘸的26个油样的地球化学特征进行分析,并研究其空间变化规律及其与地质控制因素的关系。研究结果表明该地区油样成分特征和空间展布的两分性明显。油样成分两分主要是由于母源的差别所致。而油气特征在空间上的两分则可能反映盆地演化过程中构造作用对沉积环境和礁体空间展布的控制。礁间盐层的存在限制礁体间的横向连通性。石油就近聚集的结果导致在空间上原油特征沿袭了母岩的分布特点。  相似文献   
4.
Apatite fission track (AFT) thermochronology has been applied to a composite depth profile of Precambrian basement rocks underlying the Phanerozoic Canadian Williston Basin. Thermal histories derived from the AFT data record cycles of heating and cooling which follow the pattern of regional burial history, but which also indicate major temporal and geographic variations in the timing and degree of maximum Phanerozoic temperatures. These variations in the thermal history were not previously recognised from organic maturity indicators and subsidence models. Specifically, our study suggests a late Paleozoic heat flow anomaly with a geographic extent closer to that of Middle Devonian–Carboniferous Kaskaskia subsidence patterns than to that of the Williston Basin proper. This thermal anomaly has both economic and geodynamic significance. The recognition that potential Upper Cambrian–Lower Ordovician petroleum source rocks became fully mature during the late Paleozoic distinguishes that petroleum system from others that entered the main hydrocarbon generation stage in latest Cretaceous and Paleogene time. The late Paleozoic heat flow anomaly suggested from the AFT data implies a geodynamic coupling between inelastic Kaskaskia subsidence and previously inferred late Paleozoic lithospheric weakening. While the temporally varying heat flow model is preferred, the lack of independent constraints on the maximum thickness of upper Paleozoic strata precludes the outright rejection of the previous constant heat flow model. The AFT data provide important new constraints on the evolution of the epicratonic Williston Basin and its geodynamic models.  相似文献   
5.
Because of their economic importance as hydrocarbon reservoirs, the Upper Devonian dolomitized carbonate reefs in southwest Alberta have been the subject of several studies. Still, there is no consensus on the process of matrix dolomitization and furthermore, the process of vug development is not often addressed. The studied outcrops show features of an early diagenetic matrix-selective dolomitization by a Late Devonian seawater-derived fluid. Seepage reflux dolomitization combined with latent reflux is proposed, which best explains most chemical characteristics. The cements in the vugs are precipitated from warm saline, 87Sr-enriched fluids and testify to thermogenic sulphate reduction based on the presence of sulphur, CO2 and H2S in inclusions, relatively high homogenization temperatures and depleted δ13C values, which sets constraints on the timing of vug formation. Secondary porosity may be created by the mixing of formation water with a tectonically and topographically driven fluid and by the dissolution of anhydrite nodules.  相似文献   
6.
An approach is proposed to predict the spatial distributions of undiscovered petroleum resources. Each pool is parameterized as a marked-point. The independence chain of the Hastings algorithm is used to generate an appropriate structure for pool combinations in a play. Petroleum-bearing favorability estimated from geological observations is used to represent the sampling probabilities of pool locations. An objective function measuring the distance between characteristics of the realization and constraints is constructed from both the pool size distribution and entropy maximum criterion, in which the entropy criterion places all undiscovered pools in the most favorable positions. The geometrical convergence property of the proposed Hastings algorithm is presented. The method is illustrated by a case study from the Western Canada Sedimentary Basin.  相似文献   
7.
Natural Gas Hydrate Stability in the East Coast Offshore-Canada   总被引:1,自引:0,他引:1  
The methane hydrate stability zone beneath the Canadian East Coast oceanic margin has developed to a depth of more than 600 meters beneath the deep water column in the area of the deep shelf and the slope. This zone is continuous spreading from the Labrador continental shelf in the north to the slope of the Nova Scotia shelf in the south. Gas hydrates within the methane hydrate stability zone are detected only in one situation, however, they are numerous in the deeper zone in which type II gas hydrates are present through the whole area at water depths as low as 100-200 m. Well-log indications of gas hydrate situated deeper than the base of the methane hydrate stability zone may be an indication of wetter, compositionally more complicated hydrates that probably are not of bacterial only origin. This could indicate a deep thermogenic source of gas in hydrates. The presence of hydrates in the upper 1000 m of sediments also can be considered as an indicator of deeper hydrocarbon sources.  相似文献   
8.
Three compositionally distinctive groups of oils identified in central Montana by biomarker analyses are also recognized by the unique compositions of their light hydrocarbon (gasoline range) fraction. The majority of oils produced from Paleozoic pools (Pennsylvanian Tyler–Amsden interval) group into one broad category based on the distribution of C20–C40 biomarkers. These oils not only have the lowest Paraffin Indices and relative concentrations of normal heptane, but are readily distinguishable from the other compositional groups by using selected “Mango” parameters. However, the biomarker-based subdivision of this group into at least two sub-families is not reflected in the gasoline range fraction, suggesting little effect of source rock host lithology on the distribution of C5–C8 hydrocarbons. Oils occurring predominantly in Jurassic–Cretaceous reservoirs display different biomarker and gasoline range characteristics, including Paraffin Indices, K1 parameter and relative concentrations of C7 compounds, and are classified in two separate compositional categories. In contrast to oils from the Tyler–Amsden interval, the oils produced from the Mesozoic strata are amongst the most mature oils in the study area. The unique biomarker/light hydrocarbon signatures are likely due to different source organic matter. Secondary alteration of oil due to biodegradation and migration, although recognized, appears less significant. The results indicate the overall usefulness of gasoline range compositions in delineating compositional affinities of crude oils in central Montana, clearly suggesting that the oils found in Paleozoic and Mesozoic reservoirs belong to different petroleum systems.  相似文献   
9.
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.  相似文献   
10.
Two Mississippi Valley-type (MVT) ore deposits, Kicking Horse and Monarch, have been studied with the aim of comparing the ores at the two localities and to characterize the origin of the mineralizing fluids and the ore formation process(es). Both deposits are hosted by the Middle Cambrian Cathedral Formation carbonate host rocks, Kicking Horse on the north and Monarch on the south flank of the Kicking Horse valley near Field (SE British Columbia). The ore bodies are situated at the transition of (western) basinal to (eastern) shallow-water strata of the paleo-Pacific passive margin succession in the Cordilleran Foreland Province of the Western Canada Sedimentary Basin. Both deposits are related spatially to normal faults. In both localities, the ore minerals are dominated by pyrite, sphalerite, and galena. Dolomite, minor quartz, and calcite are also present in close association with the ores. The salinity (21–30 wt% NaCl eq.) and homogenization temperatures (63–182°C) measured in fluid inclusions in carbonate, quartz, and sphalerite lie within the typical range of MVT fluid conditions. The good stoichiometry (50–53 mol% CaCO3), low δ18O values (−21 to −14‰ Vienna Peedee belemnite) and relatively high homogenization temperatures (>95°C) of the dolomite suggest the dolomites were formed under burial diagenesis. The ore-forming fluids probably interacted with siliciclastic units, based on elevated Li contents and 87Sr/86Sr ratios, which are highest in the dolomite type after the main ore stage. We propose that the ores formed from the mixing of a downward-infiltrating, sulfur-bearing halite-dissolution fluid with an upward-migrating, metal-rich evaporated seawater fluid, which had already undergone minor mixing with a dilute fluid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号