首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
自然地理   2篇
  1996年   1篇
  1991年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Several studies have demonstrated high levels of genetic (DNA), ecophysiological, ecological, and morphological variation within the species Purple Saxifrage, Saxifraga oppositifolia , in Svalbard. It has recently been proposed that S. oppositifolia is represented by two conspicuously different subspecies in this archipelago: ssp. reptans , a late-flowering, prostrate ecotype of snow-protected, damp habitats, and ssp. pulvinata , an early-flowering, cushion-like ecotype of dry, wind-exposed heaths and ridges. It has also been suggested that the subspecies may be differentiated at the tetraploid and diploid levels, respectively, which would promote reproductive isolation. These hypotheses are tested by examining variation in morphology, ecology, and pollen size and stainability in 150 plants of S. oppositifolia growing in 50 vegetation samples at four sites in the Kongsfjorden area. Although analyses of the various data sets demonstrated the large variation within the species, the material could not be separated into distinct groups. The morphological variation was continuous along local ecological gradients. The pollen grains were fully stainable and the pollen diameter data showed a unimodal distribution, suggesting that the plants analysed represent only one ploidal level. These results reject a hypothesis that the morphologically intermediate plants are hybrids between two taxa at different ploidal levels. Thus, the conspicuous variation in S. oppositifolia in Svalbard probably results from local, in situ ecoclinal differentiation. Although this variation clearly is without taxonomic significance, it is important in the broader context of arctic conservation biology and the potential impact of global warming on arctic vegetation.  相似文献   
2.
Uptake rates of NH4+, NO3 and dissolved organic nitrogen (urea) were measured in phytoplankton and in ice algae in the Barents Sea using a 15N-technique. NO3 was the most important nitrogen source for the ice algae (f-ratio = 0.92). The in situ irradiances in the subsurface chlorophyll maximum and in the ice algal communities were low. The in situ NO3 uptake rate in the ice algal communities was light-limited The in situ NO3 and NH4 uptake rates in the subsurface chlorophyll maximum were at times light-limited. It is hypothesised that NH4+ may accumulate in low light in the bottom of the euphotic zone and inhibit the in situ NO3 uptake rate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号