首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
大气科学   4篇
地球物理   3篇
地质学   17篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
We developed a simple, single-layer urban canopy model, and comparedit to both multi-layer and slab models. Our single-layer model has thefollowing features: (a) It is a column model of energy and momentumexchange between an urban surface and the atmosphere, (b) it includesthe influence of street canyons, which are parameterized to representthe urban geometry, (c) it includes shadowing from buildings andreflection of radiation, and (d) it estimates both the surfacetemperatures of, and heat fluxes from, three surface types: roof, wall,and road. In the simulation of the single-layer model, the roof washottest during the daytime, but coolest from midnight to early morning.This is consistent with output from the multi-layer model and fieldobservations at a residential area on a clear, summer day. The diurnalvariation of the energy budget from the single-layer model agrees wellwith that from the multi-layer model. Our single-layer model'sperformance is nearly that of a multi-layer model for studyingmesoscale heat islands. Nevertheless, it is simply parameterized,and thus easily included in larger-scale atmospheric models. The slabmodel has the largest nighttime cooling rate of the three models. Toovercome this, it needs more adjustments than for the canopy models.  相似文献   
2.
A new multi-anvil type high-presure apparatus has been developed using sintered diamond anvils to generate pressures over 30 GPa and temperatures up to about 2000°C. A maximum sample volume of about 1 mm3 is available in this system. The pressure was confirmed by dissociation of forsterite into Mg-perovskite and periclase. The basic techniques and problems in utilizing sintered diamond in the MA8 type high-pressure apparatus are discussed with an emphasis on the future prospect of incorporating simultancous X-ray diffraction observation.  相似文献   
3.
X-ray diffraction measurements of distorted rutile-type oxyhydroxides β-GaOOH, InOOH, β-CrOOH, and β-CrOOD were taken at a maximum pressure of up to 35 GPa under quasi-hydrostatic conditions, at ambient temperature. Anomalies in the evolution of the relative lattice constants and the axial ratios of β-GaOOH, InOOH, and β-CrOOD suggest anisotropic stiffening along the a- and/or b-axes where the hydrogen bond is formed. The changes were observed at 15 GPa in β-GaOOH and InOOH and at 4 GPa in β-CrOOD. The pressures were higher in oxyhydroxides that have longer O…O distances of the hydrogen bond at ambient pressure. In contrast, such stiffening behavior was not observed in CrOOH, which has a significant short O…O distance and strong hydrogen bond. The stiffening behaviors observed in the present study can be attributed to the symmetrization of the hydrogen bonds in oxyhydroxides, as was previously found in δ-AlOOH(D).  相似文献   
4.
The viscosity of a silicate melt of composition NaAlSi2O6 was measured at pressures from 1.6 to 5.5 GPa and at temperatures from 1,350 to 1,880°C. We employed in situ falling sphere viscometry using X-ray radiography. We found that the viscosity of the NaAlSi2O6 melt decreased with increasing pressure up to 2 GPa. The pressure dependence of viscosity is diminished above 2 GPa. By using the relationship between the logarithm of viscosity and the reciprocal temperature, the activation energies for viscous flow were calculated to be 3.7 ± 0.4 × 102 and 3.7 ± 0.5 × 102 kJ/mol at 2.2 and 2.9 GPa, respectively.  相似文献   
5.
We used an in situ measurement method to investigate the phase transition of CaGeO3 polymorphs under high pressures and temperatures. A multi-anvil high-pressure apparatus combined with intense synchrotron X-ray radiation was used. The transition boundary between a garnet and a perovskite phase at T = 900–1,650 K and P = 3–8 GPa was determined as occurring at P (GPa) = 9.0−0.0023 × T (K). The transition pressure determined in our study is in general agreement with that observed in previous high-pressure experiments. The slope, dP/dT, of the transition determined in our study is consistent with that calculated from calorimetry data.  相似文献   
6.
The melting temperature of Fe–18 wt% Si alloy was determined up to 119 GPa based on a change of laser heating efficiency and the texture of the recovered samples in the laser-heated diamond anvil cell experiments. We have also investigated the subsolidus phase relations of Fe–18 wt% Si alloy by the in-situ X-ray diffraction method and confirmed that the bcc phase is stable at least up to 57 GPa and high temperature. The melting curve of the alloy was fitted by the Simon’s equation, P(GPa)/a = (T m(K)/T 0) c , with parameters, T 0 = 1,473 K, a = 3.5 ± 1.1 GPa, and c = 4.5 ± 0.4. The melting temperature of bcc Fe–18 wt% Si alloy is comparable with that of pure iron in the pressure range of this work. The melting temperature of Fe–18 wt% Si alloy is estimated to be 3,300–3,500 K at 135 GPa, and 4,000–4,200 K at around 330 GPa, which may provide the lower bound of the temperatures at the core–mantle boundary and the inner core–outer core boundary if the light element in the core is silicon.  相似文献   
7.
In-situ synchrotron X-ray diffraction (XRD) experiments of a natural apatite with the formula of Ca5(PO4)3F0.94Cl0.06 were carried out using a diamond anvil cell and angle-dispersive technique at Photon Factory (PF), Japan. Pressure–volume data were collected up to 7.12 GPa at 300 K. The pressures were determined from the ruby fluorescence spectra shift. The unit-cell parameters and volume decreased systematically with increasing pressure, and a reliable isothermal bulk modulus and its pressure derivative were obtained in this study. The third-order Birch–Murnaghan equation of state yielded the isothermal bulk modulus of KT=91.5(38) GPa, its pressure derivative KT= 4.0(11), and the zero-pressure volume V0=524.2(3) Å3.  相似文献   
8.
The stability and pressure–volume equation of state of iron–silicon alloys, Fe-8.7 wt% Si and Fe-17.8 wt% Si, have been investigated using diamond-anvil cell techniques up to 196 and 124 GPa, respectively. Angular–dispersive X-ray diffractions of iron–silicon alloys were measured at room temperature using monochromatic synchrotron radiation and an imaging plate (IP). A bcc–Fe-8.7 wt% Si transformed to hcp structure at around 1636 GPa. The high-pressure phase of Fe-8.7 wt% Si with hexagonal close-packed (hcp) structure was found to be stable up to 196 GPa and no phase transition of bcc–Fe-17.8 wt% Si was observed up to 124 GPa. The pressure–volume data were fitted to a third-order Birch–Murnaghan equation of state (BM EOS) with zero–pressure parameters: V0=22.2(8) Å3, K0=198(9) GPa, and K0=4.7(3) for hcp–Fe-8.7 wt% Si and V0=179.41(45) Å3, K0=207(15) GPa and K0=5.1(6) for Fe-17.8 wt% Si. The density and bulk sound velocity of hcp–Fe-8.7 wt% Si indicate that the inner core could contain 3–5 wt% Si.  相似文献   
9.
We used an in situ measurement method to investigate the phase transition of Fe2SiO4 polymorphs under high pressures and temperatures. A multi-anvil high-pressure apparatus combined with synchrotron X-ray radiation was used. The stability of each polymorph was identified by observing the X-ray diffraction data from the sample. In most experiments, the diffraction patterns were collected 10–30 min after reaching the desired pressure and temperature conditions. The transition boundary between the olivine and spinel phase at T = 1,000–1,500 K and P = 2–8 GPa was determined to occur at P (GPa) = 0.5 + 0.0034 × T (K). The transition pressure determined in this study was in general agreement with that observed in previous high-pressure experiments. However, the slope of the transition, dP/dT, determined in our study was significantly higher than that estimated by the previous study combined with the in situ X-ray method.  相似文献   
10.
High-pressure and high-temperature experiments conducted in a laser-heated diamond-anvil cell with a synchrotron X-ray diffraction method have revealed a phase transformation in the aragonite-type SrCO3 at pressures above 10 GPa. The new phase has an orthorhombic symmetry and was confirmed to remain stable to 32 GPa. The Birch-Murnaghan equation of state for new phase was determined from the experimental unit cell parameters, with K0 = 101 (± 16) GPa, K0 = 4 (constrained value), and V0 = 111.9 (± 2.2). This transformation in SrCO3 is different from that in BaCO3 as reported in previous studies. After decompression at ambient pressure, the high-pressure phase transforms to a metastable structure, which has an orthorhombic symmetry. This result should also resolve a dispute regarding the stable high-pressure phases in BaCO3, which is an analog material of CaCO3 and SrCO3.This revised version was published in February 2005 with corrections to the Introduction and to the References.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号