首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58268篇
  免费   22676篇
  国内免费   46115篇
测绘学   4247篇
大气科学   25054篇
地球物理   18500篇
地质学   46656篇
海洋学   17997篇
天文学   2295篇
综合类   7078篇
自然地理   5232篇
  2024年   211篇
  2023年   724篇
  2022年   1724篇
  2021年   2189篇
  2020年   3017篇
  2019年   6401篇
  2018年   6861篇
  2017年   6479篇
  2016年   6736篇
  2015年   5842篇
  2014年   5644篇
  2013年   6140篇
  2012年   5800篇
  2011年   5592篇
  2010年   5491篇
  2009年   4890篇
  2008年   4032篇
  2007年   4024篇
  2006年   3526篇
  2005年   3291篇
  2004年   3383篇
  2003年   3154篇
  2002年   2837篇
  2001年   2640篇
  2000年   2401篇
  1999年   2871篇
  1998年   2630篇
  1997年   2655篇
  1996年   2199篇
  1995年   2039篇
  1994年   1850篇
  1993年   1688篇
  1992年   1403篇
  1991年   1074篇
  1990年   948篇
  1989年   806篇
  1988年   708篇
  1987年   516篇
  1986年   437篇
  1985年   333篇
  1984年   336篇
  1983年   204篇
  1982年   255篇
  1981年   179篇
  1980年   128篇
  1979年   129篇
  1978年   60篇
  1977年   50篇
  1971年   56篇
  1970年   48篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
The geodynamic mechanism of the late Early Cretaceous magmatic flare‐up in the collisional zone between the Lhasa and Qiangtang terranes in Tibet is controversial because of a scarcity of robust evidence. To address this problem, we report geochronological, geochemical and Hf isotopic data for the newly discovered Gufeng gabbros from the Duolong Cu–Au mineral district of the western Bangong–Nujiang Suture Zone (BNSZ). The gabbro samples, dated at 126.3 ± 1.8 Ma, show geochemical similarities to typical ocean island basalt (OIB) and have positive εHf(t) values of +3.3 to +6.9. The gabbros were generated by decompression melting of deep upwelling asthenosphere. This event is best explained by slab break‐off and the resultant development of a slab window beneath central Tibet.  相似文献   
3.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
4.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
5.
In this study, a directional interpolation infinite element suited to a saturated porous medium is presented to account for dynamic problems with semi-infi  相似文献   
6.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
7.
This paper presents a detailed numerical study of the retrogressive failure of landslides in sensitive clays. The dynamic modelling of the landslides is carried out using a novel continuum approach, the particle finite element method, complemented with an elastoviscoplastic constitutive model. The multiwedge failure mode in the collapse is captured successfully, and the multiple retrogressive failures that have been widely observed in landslides in sensitive clays are reproduced with the failure mechanism, the kinematics, and the deposition being discussed in detail. Special attention has been paid to the role of the clay sensitivity on each retrogressive failure as well as on the final retrogression distance and the final run‐out distance via parametric studies. Moreover, the effects of the viscosity of sensitive clays on the failure are also investigated for different clay sensitivities.  相似文献   
8.
This paper presents a second-order work analysis in application to geotechnical problems by using a novel effective multiscale approach. To abandon complicated equations involved in conventional phenomenological models, this multiscale approach employs a micromechanically-based formulation, in which only four parameters are involved. The multiscale approach makes it possible a coupling of the finite element method (FEM) and the micromechanically-based model. The FEM is used to solve the boundary value problem (BVP) while the micromechanically-based model is utilized at the Gauss point of the FEM. Then, the multiscale approach is used to simulate a three-dimensional triaxial test and a plain-strain footing. On the basis of the simulations, material instabilities are analyzed at both mesoscale and global scale. The second-order work criterion is then used to analyze the numerical results. It opens a road to interpret and understand the micromechanisms hiding behind the occurrence of failure in geotechnical issues.  相似文献   
9.
运用放射免疫分析法测定了促黄体释放激素类似物 (LHRH A)和人绒毛膜促性腺激素(hCG)对南方鲶血清促性腺激素 (GTH)水平的影响 ,结果表明 :LHRH A和hCG都能提高南方鲶一龄幼鱼血清GTH水平 ,hCG与LHRH A结合注射后血清GTH水平显著高于单独注射hCG或LHRH A后的血清GTH水平。LHRH A和hCG结合注射可诱导性成熟南方鲶排卵 ,同时排卵过程中伴随着血清GTH水平的急剧上升 ,在排卵后迅速下降 ;注射同样剂量的药物而未排卵的血清GTH水平虽有升高 ,但升高的幅度不及排卵鱼。这种血清GTH水平的急剧增高对诱导南方鲶卵母细胞最后成熟和排卵具有重要作用。  相似文献   
10.
Collection and arrangement of the historical records of climatic changes and environment evolution,espectial-lyin the aspect of calamities,are made on the history documents of past 1500 years about Haiˊan region,Jiangsu Province.There existed two obvious flooding-drought frequently-occurring periods:one was from 1550 AD to 1850 AD and another was 100 AD to 1200AD.The period of 1550 AD to1850 AD is interrupted by two relatively arid and cold climatic periods:one was from 1630 AD to 1700 AD and another was 1750 AD to 1820 AD.The main characteristic of the calamity periods is that they occurred by turns,and sometimes,both drought and flooding occurred in the same year.The instability of the climatic changes in the Little Ice Age may be the main reason of the frequently-occurring flooding and drought in Haiˊan region.Research results also show that the frequently-occurring periods of flooding and drought is in close relationship with the solar activity,and therefore,occurrence of the flooding and drought may be in relation with the intensity of the solar activity.This hypothesis may need further study in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号