首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   5篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The so-called ‘enhanced migration’ which uses diffraction tomography as the ‘repair tool’ for correction of amplitudes (reflection coefficients) of migrated sections is discussed. As with any linearized procedure, diffraction tomography requires knowledge of the initial model. It is suggested that the initial model is taken as the migrated image. It will be demonstrated that diffraction tomography applied to the data residuals improves the amplitudes of the migrated images. Migration is redefined as the reconstruction of the wavefront sets of distributions (reflection interfaces), and the inversion process as tomographic correction of migrated images.  相似文献   
2.
A new method for suppressing multiple reflections in seismograms is developed. It is based on a downward continuation procedure which uses the full acoustic wave equation (hyperbolic form) as a downward continuation operator. We demonstrate that the downward continuation of the recorded wave field maps a reflectivity function without multiply reflected events. The method is applied successfully to individual traces of plane-wave decomposed (slant-stacked) synthetic and field data.  相似文献   
3.
Conventional velocity analysis can handle a horizontally stratified medium well. There is no indication, though, that it will be as successful when applied to a more complicated geological structure. In fact, a small angle of incidence may transform to a wide-angle reflection event for a dipping interface. In this case, conventional velocity analysis may lead to large errors and thus cannot be applied. Seismic tomography is attractive as it is virtually free from any restrictions imposed on the velocity distribution in the model space or on the setup of a seismic experiment. It is important, however, to recall that seismic tomography yields results of inferior quality compared to medical tomography. This paper investigates the reason for this and how to suppress a significant blurring of seismic tomograms. Unlike medical tomography, one cannot provide full angular coverage of the model space in a typical seismic experiment: the sources and the receivers cannot surround an unknown object inside the earth to provide a complete spectrum of view angles. Incomplete angular coverage may lead to the occurrence of large inaccuracies in the computed tomograms especially when the initial model is poorly chosen. We demonstrate a method of suppressing the adverse effects related to an incomplete angular recording. This is ‘compensation tomography’ which can be used efficiently in the case of a limited angular aperture. Numerical experiments illustrate the theory.  相似文献   
4.
A new method to suppress water-bottom multiples (water-bottom reverberations) uses the fact that in the domain of intercept time and ray parameter (τ–p domain) the water-bottom reverberations are strictly periodical for a horizontal flat sea bottom. Using this property a comb filter can be designed. The window of the filter should be approximately equal to the duration of a source pulse. The algorithm finds the maximum of the periodical energy throughout the τ–p domain and then designs the comb filter which eliminates the water bottom reverberations from each trace in the τ– p domain. This process can be repeated for higher order reverberations. Finally the τ–p domain with attenuated multiples is transformed back to the conventional x -- t space. The method is illustrated on a variety of synthetic data and on a set of real marine CMP data acquired in the North Sea near the Norwegian shore.  相似文献   
5.
Almost all ray-tracing methods ignore the analysis of the amplitudes of seismic arrivals and therefore utilize only half of the available information. We propose a method which is a combination of ray-tracing imaging and transformation of the amplitudes of wide-aperture data. Seismic data in the conventional X-T domain are first transformed to the domain of intercept time τ and ray parameter p to recover the plane wave response. The next step is the derivation of a series of plane wave reflection coefficients, which are mapped as a function of τ and p. The reflection coefficients R(τ, p) for two arbitrarily chosen traces can then be used in our inversion method to derive a slowness-depth and a density-depth profile. It is shown that the inclusion of amplitudes of seismic arrivals (in this method, we consider the acoustic case) makes the inverse method highly stable and accurate. In a horizontally stratified medium one can recover separate profiles of velocity and density. Since this method utilizes large-offset data, it can be used for separate recovery of velocity and density to a greater depth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号