首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
地球物理   34篇
地质学   8篇
海洋学   3篇
自然地理   2篇
  2018年   3篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有47条查询结果,搜索用时 250 毫秒
1.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   
2.
Strong earthquake occurrence (M ≥ 6.0) onshore and offshore the Cyprus Island constitutes significant seismic hazard because they occur close to populated areas. Seismicity is weak south of the Island along the Cyprean Arc and strong events are aligned along the Paphos transform fault and Larnaka thrust fault zone that were already known and the Lemessos thrust fault zone that defined in the present study. By combining the past history of strong (M ≥ 6.0) events and the long-term tectonic loading on these major fault zones, the evolution of the stress field from 1896 until the present is derived. Although uncertainties exist in the location, magnitude and fault geometries of the early earthquakes included in our stress evolutionary model, the resulting stress field provides an explanation of later earthquake triggering. It was evidenced that the locations of all the strong events were preceded by a static stress change that encouraged failure. The current state of the evolved stress field may provide evidence for the future seismic hazard. Areas of positive static stress changes were identified in the southwestern offshore area that can be considered as possible sites of future seismic activity.  相似文献   
3.
The Mw 7.4 Izmit earthquake of 17 August 1999 struck a part ofthe North Anatolian fault in the area of Izmit Bay (NW Turkey). Historicalinformation shows that the fault which moved during the generation of thisearthquake consists of two fault segments moved during the generation oflarge (M 7) earthquakes in 1719 and 1754, respectively. Since then onlythe central part (between Izmit and Lake Sapanca) of this fault ruptured bythe generation of a smaller shock (M = 6.6) in 1878.The spatial stress variations based on the calculation of changes in theCoulomb Failure Function (CFF) associated with this earthquake aresupported by the distribution of strong aftershock foci. Large positive valuesof CFF to the east and west of the mainshock epicenter are inagreement with the notion that secondary faults were triggered there by thegeneration of the main event. Large positive values of CFF are alsoobserved in the adjacent western fault segment where the 1766 event wasgenerated, evidencing the occurrence of the next strong earthquake in thissegment.  相似文献   
4.
To estimate the seismic response according to Eurocode (EC8) and almost all other national codes, site conditions have to be properly characterized so that soil amplification and the corresponding peak ground motion can be calculated. In this work, different geophysical and geotechnical methods are combined in order to define the detailed ground conditions in selected sites of the Hellenic Accelerometric Network (HAN) in Crete. For this purpose, the geological information of the sites and shear wave velocity, calculated from surface wave measurements, is used. Additionally, ground acceleration data recorded through HAN have been utilized from intermediate depth earthquakes in the broader area of South Aegean Sea. Using the recorded ground motion data and the procedure defined in EC8, the corresponding elastic response spectrum is calculated for the selected sites. The resulting information is compared to the values defined in the corresponding EC8 spectrum for the seismic zone that includes the island of Crete. The comparison shows that accurate definition of ground type through geological, geotechnical and geophysical investigations is important. However, our current comparison focuses on the distribution of values rather than the absolute values of EC8-prescribed spectra, and the results should be considered in this context.  相似文献   
5.
A thorough spatiotemporal analysis of the intense seismic activity that took place near the Aegean coast of NW Turkey during January–March 2017 was conducted, aiming to identify its causative relation to the regional seismotectonic properties. In this respect, absolute and relative locations are paired and a catalog consisting of 2485 events was compiled. Relative locations are determined with high accuracy using the double-difference technique and differential times both from phase pick data and from cross-correlation measurements. The spatial distribution of the relocated events revealed a south-dipping causative fault along with secondary and smaller antithetic segments. Spatially, the seismicity started at the westernmost part and migrated with time to the easternmost part of the activated area. Temporally, two distinctive periods are observed, namely an early period lasting 1 month and a second period which includes the largest events in the sequence. The investigation of the interevent time distribution revealed a triggering mechanism, whereas the ETAS parameters show a strong external force (μ?>?1), which might be attributed to the existence of the Tuzla geothermal field.  相似文献   
6.
The M w 6.2 Lefkada earthquake occurred on 14 August 2003 beneath the western coastline of Lefkada Island. The main shock was followed by an intense aftershock activity, which formed a narrow band extending over the western coast of the Island and the submarine area between Lefkada and Kefalonia Islands, whereas additional off fault aftershocks formed spatial clusters on the central and northwestern part of the Island. The aftershock spatial distribution revealed the activation of along-strike adjacent fault segment as well as of secondary faults close to the main rupture. The properties of the activated segments were illuminated by the precisely located aftershocks, fault plane solutions determination and the cross sections performed parallel and normal to their strike. The aftershock focal mechanisms exhibited mainly strike slip faulting throughout the activated area, although deviation of the dominant stress pattern is also observed. The results help to emphasize the importance of the identification of activated nearby fault segments possibly triggered by the main rupture. Because such segments are capable to produce moderate events causing appreciable damage, they should be viewed with caution in seismic hazard assessment in addition to the major regional faults.  相似文献   
7.
Aftershock rates seem to follow a power law decay, but the assessment of the aftershock frequency immediately after an earthquake, as well as during the evolution of a seismic excitation remains a demand for the imminent seismic hazard. The purpose of this work is to study the temporal distribution of triggered earthquakes in short time scales following a strong event, and thus a multiple seismic sequence was chosen for this purpose. Statistical models are applied to the 1981 Corinth Gulf sequence, comprising three strong (M = 6.7, M = 6.5, and M = 6.3) events between 24 February and 4 March. The non-homogeneous Poisson process outperforms the simple Poisson process in order to model the aftershock sequence, whereas the Weibull process is more appropriate to capture the features of the short-term behavior, but not the most proper for describing the seismicity in long term. The aftershock data defines a smooth curve of the declining rate and a long-tail theoretical model is more appropriate to fit the data than a rapidly declining exponential function, as supported by the quantitative results derived from the survival function. An autoregressive model is also applied to the seismic sequence, shedding more light on the stationarity of the time series.  相似文献   
8.
Microseismicity and faulting geometry in the Gulf of Corinth (Greece)   总被引:7,自引:0,他引:7  
During the summer of 1993, a network of seismological stations was installed over a period of 7 weeks around the eastern Gulf of Corinth where a sequence of strong earthquakes occurred during 1981. Seismicity lies between the Alepohori fault dipping north and the Kaparelli fault dipping south and is related to both of these antithetic faults. Focal mechanisms show normal faulting with the active fault plane dipping at about 45° for both faults. The aftershocks of the 1981 earthquake sequence recorded by King et al . (1985 ) were processed again and show similar results. In contrast, the observations collected near the western end of the Gulf of Corinth during an experiment conducted in 1991 ( Rigo et al . 1996 ), and during the aftershock studies of the 1992 Galaxidi and the 1995 Aigion earthquakes ( Hatzfeld et al . 1996 ; Bernard et al . 1997 ) show seismicity dipping at a very low angle (about 15°) northwards and normal faulting mechanisms with the active fault plane dipping northwards at about 30°. We suggest that the 8–12 km deep seismicity in the west is probably related to the seismic–aseismic transition and not to a possible almost horizontal active fault dipping north as previously proposed. The difference in the seismicity and focal mechanisms between east and west of the Gulf could be related to the difference in the recent extension rate between the western Gulf of Corinth and the eastern Gulf of Corinth, which rotated the faults dipping originally at 45° (as in the east of the Gulf) to 30° (as in the west of the Gulf).  相似文献   
9.
Information concerning two seismic lines, the first located northwest of the Lefkada Island and the second from the deep Ionian basin to the gulf of Patras, is used to trace the Kefalonia Transform Zone (KTZ) and to explore its relation with the sedimentary sequences and the deeper geologic structures in the study area. In addition, sea bottom topography and fault plane solutions are combined in order to explore the prolongation of the KTZ into the Ionian Abyssal Plain (IoAP) and to describe its properties. The boundary between the subduction of the eastern Mediterranean oceanic crust under the overriding continental crust and the KTZ is well constrained by the seismic data in association with seismicity and regional stress field. The southern prolongation of the KTZ is located in the IoAP towards the direction between Kefalonia and Zakynthos Islands at depth greater than 15 km. The southern part of the KTZ exhibits a strike–slip motion with a thrust component according to fault plane solutions of moderate and strong earthquakes. The seismic section mostly confirms the existence of the thrust component and gives information about the tectonic status east and west of the KTZ.  相似文献   
10.
Spinner dolphins Stenella longirostris longirostris off the south-west coast of Mauritius are subject to ongoing anthropogenic disturbance in the form of daily dolphin tourism, which has intensified since 1998. Abundance of this species was estimated using photo-identification data and mark-recapture analysis. Between April 2008 and June 2010, identification photographs were collected from dolphins occurring along a 30 km length of the coast of south-west Mauritius. A total of 250 groups were encountered over 229 survey days. Mark-recapture analyses were performed on a photographic dataset of more than 8 000 good- and excellent-quality images and 83 animals were identified as distinctively marked individuals. The majority (85.5%) were seen more than once and resightings indicated a resident population. The compiled version of SOCPROG 2.4 was used to investigate the lagged identification rate. The fitted model supported a mostly resident population with additional animals moving in and out of the study area. The estimated abundance of the total population in the study area ranged between 138 and 399 individuals. Our results can be used for monitoring the population for fluctuations and for encouraging both the enforcement of laws regarding dolphin watching and the development of further means of management needed to ensure the long-term presence of this population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号