首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
大气科学   1篇
地球物理   15篇
地质学   36篇
海洋学   1篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2004年   3篇
  2003年   2篇
  1993年   2篇
排序方式: 共有55条查询结果,搜索用时 968 毫秒
1.
2.
Station recording air temperature (Ta) has limited spatial coverage, especially in unpopulated areas. Since temperature can change greatly both spatially and temporally, stations data are often inadequate for meteorology and subsequently climatology studies. Time series of moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (Ts) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM), albedo from Era-Interim and meteorological data from 2006 to 2015, were used to estimate daily mean air temperature over Iran. Geographically weighted regression was applied to compare univariate and multivariate model accuracy. In the first model, which only interfered with land surface temperature (LST), the results indicate a weak performance with coefficient of determination up to 91% and RMSE of 1.08 to 2.9 °C. The mean accuracy of a four-variable model (which used LST, elevation, slope, NDVI) slightly increased (6.6% of the univariate model accuracy) when compared to univariate model. RMSE dropped by 19% of the first model. By addition albedo in the third model, the coefficient of determination increased significantly. This increase was 32% of the univariate model and 23.75% of the 4-variable model accuracy. The statistical comparison between the three models revealed that there is significant improvement in air estimation by applying the geographically weighted regression (GWR) method with interfering LST, NDVI, elevation, slope, and albedo with mean absolute RMSE of 0.62 °C and mean absolute R2 of 0.99. In order to better illustrate the third model, t values were spatially mapped at 0.05 level.  相似文献   
3.
The sawing rate is one of the most significant and effective parameters in extracting building stones via diamond wire sawing. This parameter designates the capability of diamond wire sawing for sawing different stones; in addition, the parameter gives rise to economical considerations for quarry designers. In this study, the existent relations between stone geotechnical parameters and the sawing rate of stones via diamond wire sawing were analyzed using regression and correlation coefficient as well as the collected data from Marmarit stone quarries. Moreover, we estimated the sawing rate of Marmarit using the dimensional stone rock mass rating (DSRMR); upon comparison of the data obtained from DSRMR our pre‐collected data on quarries, we did not gain satisfactory results from DSRMR, hence we used artificial neural network (ANN). The results showed that the percentage of Silica, the coefficient of water absorption, the uniaxial compressive strength (UCS), and abrasive hardness are the proper parameters for creating the ANN. Discontinuities have the least effects possible on diamond wire sawing. Having given the training possibility of the ANN, and its ability to evaluate relations among input parameters, the ANN, which was being trained with Marmarit's traits, was an accurate network for estimating diamond wire sawing in Marmarit quarries, although it could not generalize this network for other stones such as Chini and Crystal. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
Although sliced by several strike slip faults, a large part of Central Iran remained aseismic during the period of time covered by the instrumental and historical seismic records. Stating the existence of earthquakes in the Holocene is therefore important for the assessment of the regional seismic hazard. A palaeoseismic study of the Deshir fault demonstrates that Central Iran hosted large earthquakes during latest Pleistocene and Holocene. The last event corresponds to 1 m‐deep fissures, which sandy infilling yielded an optically stimulated luminescence (OSL) age of 2.8 ± 1.4 ka. At least two previous events, outlined by older fissures and/or colluvial wedges, have been recorded over the last 10–30 ka. The magnitudes are difficult to assess because the actual slips per event are unknown. The size of the fissures and the significant vertical displacement associated with a colluvial wedge are nevertheless compatible with M ≈ 7 events along a primary strike‐slip surface break.  相似文献   
5.
Nazari  Gh. H.  Torabi  Gh.  Arai  Sh.  Morishita  T. 《Geotectonics》2019,53(6):786-805
Geotectonics - The Lower Oligocene Kal-e-kafi (East of Anarak, Central Iran) lamprophyres occur as stocks and dikes, which cross-cut the Eocene volcanic and Cretaceous sedimentary rocks. The...  相似文献   
6.
Proper estimation of the spatial distribution of water-table depth is highly important in most groundwater studies. Groundwater depth is measured at specific and limited points and it is estimated for other parts using spatial estimation methods. In this study, two multivariate methods, artificial neural network (ANN) and multiple linear regression (MLR), are examined to estimate water-table depth in an unconfined aquifer located in Shibkooh, Iran. The different ancillary data, including spatial coordinates, digital elevation model (DEM), aquifer bed elevation, specific resistivity and aquifer thickness were used to improve estimates based on these methods. It was proved that performance of the ANN surpasses that of the MLR method. Using the spatial coordinates, the aquifer bed elevation and aquifer thickness resulted in the optimum spatial estimation of the water-table depth. These parameters, directly or indirectly, affect the water-table depth estimation through techniques such as ANN capable of modelling of nonlinear relationships.  相似文献   
7.

Flooding is one of the most problematic natural events affecting urban areas. In this regard, developing flooding models plays a crucial role in reducing flood-induced losses and assists city managers to determine flooding-prone areas (FPAs). The aim of this study is to investigate on the prediction capability of fuzzy analytical hierarchy process (FAHP) and Mamdani fuzzy inference system (MFIS) methods as two completely and semi-knowledge-based models to identify FPAs in Tehran, Iran. Six flooding conditioning factors including density of channel, distance from channel, land use, elevation, slope, and water discharge were extracted from various geo-spatial datasets. A total of 62 flooding locations were identified in the study area based on the existing reports and field surveys. Of these, 44 (70%) floods were randomly selected as training data and the remaining 18 (30%) cases were used for the validation purposes. After the data preparation step, data were processed by means of two statistical (FAHP) and soft computing (MFIS) methods. Unlike most statistical and soft computing approaches which use flooding inventory data for both training and evaluation of models, only conditioning factor was involved in data processing and inventory data were used in the current study to assess models prediction accuracy. Also, the efficiency of two approaches was evaluated by pixel matching (PM) and area under curve to validate the prediction capability of models. The prediction rate for MFIS and FAHP was 89% and 84%, respectively. Moreover, according to the results obtained from PM, it was found out that about 90% of known flooding locations fell in high-risk areas, whereas it was 83% for FAHP, indicating that flooding susceptibility map of MFIS has higher performance.

  相似文献   
8.
Predicting soil erosion change is an important strategy in watershed management. The objective of this research was to evaluate land use change effects on soil erosion in the north of Iran using five land use scenarios. Three land use maps were created for a period of 25 years (1986–2010) to investigate land use transition and to simulate land use for the year 2030. Additionally, the RUSLE model was used to estimate erosion and the effect of land use change. The results showed that CLUE-s is suitable for modeling future land use transition using ROC curve. The median soil loss in the basis period was 104.52 t ha?1 years?1. Results indicate that the range of soil loss change is 2–32% in simulated period and soil loss value was higher than basis period in all scenarios. Thirty percent decrease in demand scenario has the lowest soil loss in simulated period, and the soil loss value under this scenario will be only 2% more than the basis period. Thus, the soil conversion effects resulted from the demand of each land use.  相似文献   
9.
Large diameter fully cased wells that gain water from the bottom are often dug in sandy and collapsible aquifers. They have cylindrical vertical walls lined with brick or concrete. The well bottom is partially filled with aquifer material through which the flow is vertically upward. When the vertical hydraulic gradient reaches a critical value, quicksand occurs and the well structure can be destroyed. Another difficulty encountered is drawdown in the wellbore and the drying up of the well. To overcome these problems, the flow around and beneath these wells is numerically simulated. The simulation results are used to investigate the effect of well and aquifer parameters on quicksand and drawdown. For practical purposes, the dimensionless drawdown-time and dimensionless vertical gradient-time curves are developed. It was found that the ratio of filling material thickness to well radius affects the shape of these type curves. The type curves may be used to predict the time after pumping commences when quicksand occurs and the well dries up. They are also useful to design the safe pumping rate and duration as well as the optimum well radius. These are demonstrated by analyzing the pumping test data from a case study in the arid Chah Kutah region, southern Iran.  相似文献   
10.
Neyriz ophiolite in Abadeh Tashk area appears as four major separated massifs in an area with 125 km2, south of Iran. Peridotites including harzburgite, dunite, and lesser low-Cpx lherzolite are the major constituents of the ophiolite with very minor mafic rocks. Usual gabbros of ophiolite complexes are virtually absent from the study area. Mineral modality associated with bulk rock and mineral chemistry of the peridotites show a progression from fertile to ultra-refractory character, reflected by a progressive decrease in modal pyroxenes and in Al2O3, CaO, SiO2, Sc, Ta, V, and Ga values of the studied rocks by approaching chromite deposits. The Neyriz peridotites vary from low-Cpx lherzolite (MgO, 41.97–43.1 wt.%; Al2O3, 0.8–1.3 wt.%) with low content of Cr# spinel (36.7–37.6) and Fo olivine (90.79–91.5) to harzburgite (MgO, 44.31–45.25 wt.%;Al2O3, 0.29–0.45 wt.%; Cr# spinel, 58.2–73.45; Fo olivine, 91.23–91.56), and then to dunite (MgO, 45.9–49.2 wt.%; Al2O3, 0.18–0.48 wt.%) with higher content of Cr# spinel (74.34–79.36) and Fo olivine (91.75–94.68). Compared to modern oceanic settings, mineral and rock composition of low-Cpx lherzolite plot within the field of mid-ocean-ridge environment, whereas those of harzburgite and dunite fall in the field of fore-arc peridotites. As a result of the studies on minerals and whole rock chemistry along with rock interrelationships, we contend that the peridotites were subsequently affected by percolating hydrous boninitic melt from which the high-Cr–Mg, low-Ti chromitites were formed within mantle wedge above the supra-subduction zone in a fore-arc setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号