首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   6篇
大气科学   2篇
地球物理   18篇
地质学   2篇
自然地理   5篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2013年   1篇
  2011年   4篇
  2007年   2篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1980年   1篇
排序方式: 共有27条查询结果,搜索用时 796 毫秒
1.
2.
Wind-tunnel measurements of the flow over an isolated valley both normal and at an angle (45°) to a simulated neutrally stable atmospheric boundary layer are presented. Attention is concentrated on the nature of the flow within the valley itself. The work formed part of a wider study that included detailed field measurements around an African desert valley and some limited comparisons with that work are included. A scale of about 1:1000 was used for the laboratory work, in which an appropriate combination of hot wire and particle image velocimetry was employed. For a valley normal to the upwind flow, it is shown that the upstream influence of the valley extends to a distance of at least one half of the axial valley width upstream of the leading edge, whereas differences in mean flow and turbulence could be identified well beyond two valley widths from the downwind edge. Non-normal wind angles lead to significant along-valley flows within the valley and, even at two valley heights above the valley ridge level, there remains a significant spanwise flow component. Downwind turbulence levels are somewhat lower in this case, but are still considerably higher than in the undisturbed boundary layer. At both flow angles, there are significant recirculation regions within the valleys, starting from mean separation just beyond the leading edge, but the strong spanwise flow in the 45° case reduces the axial extent of the separated zone. The flow is shown to be in some ways analogous to flow over an isolated hill. Our results usefully enhance the field data and could be used to improve modelling of saltation processes in the field.  相似文献   
3.
Weathering rates were calculated using the height difference between lead lettering and marble on gravestones at three sites in the UK. Comparison of their regression lines and residuals suggested that two of the sites, Portsmouth and Wolverhampton, had similar amounts and rates of weathering over the last 100-150 years. Gravestones in Swansea appear to have weathered much more and much faster than gravestones at the other two sites. These differences may be the result of the differing pollution and rainfall histories of the three sites.  相似文献   
4.
Challenges of calculating dunefield mobility over the 21st century   总被引:1,自引:0,他引:1  
Attention has been directed towards both the impacts of future climate change on environmental systems and dunefield activity in the past, but there has been relatively little consideration of potential dune mobility in a future and possibly warmer world. This paper considers the use and limitations of four Global Circulation Models (GCMs) (Hadcm3, Hadcm2, CSIRO-mk2b and CGCM1), in combination with simple dune mobility indices to predict the activity of the Kalahari dunefield. It is clear that uncertainties surround GCM resolution and accuracy, mobility index robustness for the calculation of intra-annual dune mobility and data collection for mobility index calibration. Macro-scale studies that look at large areas of the world over long time scales are well suited to GCM and mobility index use, but dune mobility can be variable within a dunefield, and it is the extreme sand transporting events, occurring at high temporal resolutions, that are the most important for short term studies. To investigate intra-annual changes in dune mobility over a specific dunefield techniques such as downscaling, weather generators and probability curve fitting can help provide climate predictions for smaller areas over shorter time frames. However, these methods introduce uncertainty of their own, and they often rely on the accuracy of original GCM predictions or the climate parameter relationships observed at present. Analysis of intra-annual changes also requires mobility indices that can model monthly mobility patterns well, although existing indices have only been used for calculating annual dune mobility potential. When they are used for intra-annual predictions, the lack of lag response between precipitation decreases and the assumed vegetation dieback leads to an exaggerated amplitude pattern of dune mobility throughout the year. Calibration of dune mobility indices to dune mobility observed on the ground is therefore important but is hampered by a lack of observed measurements for individual months. Solutions are available to overcome some of the outlined problems, but they can provide their own set of uncertainties, which combine to further reduce the confidence given to future dune mobility predictions.  相似文献   
5.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
6.
Saltation is the dominant form of aeolian transport of sand sized grains, yet its heterogeneous spatial and temporal distribution, and inherent feedback and interaction with the surface over which sand is transported, hinders large scale quantification. In this letter we present preliminary data on saltation cloud characteristics quantified using terrestrial laser scanning (TLS). These data, together with surface moisture and surface roughness patterns, elucidate the importance of saltation in the development of protodunes on a drying beach, and indicate the potential usefulness of TLS in examining aeolian processes in both beach and desert environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
Wind flow has been studied in situations where it encounters porous and solid windbreaks, but there has been a lack of research exploring turbulent wind dynamics around and in the lee of real vegetation elements. In dryland contexts, sparse vegetation plays an important role in modulating both the erosivity of the wind and the erodibility of surfaces. Therefore, understanding the interactions between wind and vegetation is key for improving wind erosion modelling in desert landscapes. In this study, turbulent wind flow around three typical dryland vegetation elements (a grass clump, a shrub, and a tree) was examined in Namibia using high‐frequency (10 Hz) sonic anemometry. Spatial variations in mean wind velocity, as well as Reynolds stresses and coherent turbulent structures in the flow, were compared and related to the porosities and configurations of the study elements. A shelter parameter, originally proposed by Gandemer ( 1979 , Journal of Wind Engineering and Industrial Aerodynamic 4 : 371–389), was derived to describe the combined impact of the different elements on the energy and variability of horizontal wind flow. Wind velocity was reduced by 70% in the immediate lee of the grass and 40% in the lee of the shrub, but velocity recovered exponentially to equilibrium over the same relative distance in both cases (~9 element heights downwind). Quadrant analysis of the high‐frequency wind flow data revealed that the grass clump induced a small recirculation zone in its lee, whereas the shrub did not. Also, higher Reynolds shear stress and higher ‘flow positivity magnitude’ [ratio of Q1 (outward interaction) and Q4 (sweep) quadrants to Q2 (ejection) and Q3 (inward interaction) quadrants] was generally observed in the wake of the grass. These differences arose because the porosity of the grass clump (53%) was lower than the porosity of the shrub (69%), and thus bleed flow through the shrub was more significant. The bluff‐body behaviour of the grass resulted in a more intense and more extensive sheltering effect than the shrub, which implies that overall sediment transport potential is lower in the wake of the grass. The tree displayed a different wake structure to the grass and shrub, owing to the elevation of its crown. A ‘bottom gap’ effect was observed, whereby wind velocities increased possibly due to streamline compression in the gap between the ground and the underside of the tree crown. Differences in flow momentum between the bottom gap and the low‐pressure leeward region of the crown are a probable explanation for the formation of a large recirculation vortex. The bottom gap effect led to decreased sheltering up to three tree heights downwind, but the surface became increasingly protected by the frontal impact of the crown over a further eight tree heights downwind (~30 m). The extraction of momentum from the air by the tree therefore resulted in a far more extensive sheltering effect compared to the grass and shrub. This study represents an important investigation of the impact of different vegetation types on turbulent wind flow, and results can be integrated as parameterizations into spatial sediment transport models that explore landscape‐scale change on semi‐vegetated desert surfaces. Copyright © 2016 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
8.
Wind erosion is a key component of land degradation in vulnerable dryland regions. Despite a wealth of studies investigating the impact of vegetation and windbreaks on windflow in controlled wind‐tunnel and modelling environments, there is still a paucity of empirical field data for accurately parameterizing the effect of vegetation in wind and sediment transport models. The aim of this study is to present a general parameterization of wind flow recovery in the lee of typical dryland vegetation elements (grass clumps and shrubs), based on their height (h ) and optical porosity (θ ). Spatial variations in mean wind velocity around eight isolated vegetation elements in Namibia (three grass clumps and five shrubs) were recorded at 0.30 m height, using a combination of sonic and cup anemometry sampled at a temporal frequency of 10 seconds. Wind flow recovery in the lee of the elements was parameterized in an exponential form, . The best‐fit parameters derived from the field data were u 0 = u ref(0.0146θ ? 0.4076) and b = 0.0105θ + 0.1627 . By comparing this parameterization to existing models, it is shown that wind recovery curves derived from two‐dimensional wind fence experiments may not be suitable analogues for describing airflow around more complex, three‐dimensional forms. Field‐derived parameterizations such as the one presented here are a crucial step for connecting plant‐scale windflow behaviour to dryland bedform development at landscape scales. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
9.
Representation of dust sources remains a key challenge in quantifying the dust cycle and its environmental and climatic impacts. Direct measurements of dust fluxes from different landform types are useful in understanding the nature of dust emission and characterizing the dynamics of soil erodibility. In this study we used the PI-SWERL® instrument over a seasonal cycle to quantify the potential for PM10 (particles with diameter ≤10 μm) emission from several typical landform types across the Tengger Desert and Mu Us Sandy Land, northern China. Our results indicate that sparse grasslands and coppice dunes showed relatively high emission potentials, with emitted fluxes ranging from 10−1 to 101 mg m−2 s−1. These values were up to five times those emitted from sand dunes, and one to two orders of magnitude greater than the emissions from dry lake beds, stone pavements and dense grasslands. Generally, PM10 emission fluxes were seen to peak in the spring months, with significant reductions in summer and autumn (by up to 95%), and in winter (by up to 98%). Variations in soil moisture were likely a primary controlling factor responsible for this seasonality in PM10 emission. Our data provide a relative quantification of differences in dust emission potential from several key landform types. Such data allow for the evaluation of current dust source schemes proposed by prior researchers. Moreover, our data will allow improvements in properly characterizing the erodibility of dust source regions and hence refine the parameterization of dust emission in climate models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
10.
The west‐central part of South Africa's Free State Province falls within the transition zone between South Africa's sub‐humid, temperate grasslands to the east, and the semi‐arid Karoo and arid Kalahari to the south and west, respectively. The area is characterized by low rainfall (typically 500 mm or less) with high variability, but environmental conditions allow widespread dryland commercial agriculture (maize, sunflowers and stock farming). However, human activity promotes wind erosion and the area is susceptible to dust emissions. This study is the first to quantify the degree of wind erosion on the agricultural soils in the region under prevailing winter to spring climatic conditions and land management practices. Using arrays of cup anemometers, dust deposition traps and saltation impact sensors (Safires), measurements were made of the key erosivity and erodibility drivers that control the degree of wind erosion. Results demonstrate that significant quantities of dust are mobilized, particularly during the months of September and October. Thresholds of wind erosion are shown to respond particularly closely to changes in surface and aerodynamic roughness (z0) with the amount of collected dust correlating well with measures of wind erosivity that weight the impact of higher wind speeds. Given the importance of surface roughness in controlling erosion thresholds, results show that the opportunity exists for well designed farming practices to control wind erosion. However, it is likely that climatically driven environmental change will impact on some of the identified controls on erosion (wind power, moisture availability) with the result that the wind erosion hazard is likely to increase within this marginal environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号