首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   9篇
地质学   5篇
  2015年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2000年   1篇
  1997年   1篇
  1994年   2篇
  1989年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
This paper presents two numerical case studies of medium and strong motion events, namely Loma-Prieta 1989 and Hyogoken-Nambu (Kobe) 1995. These simulations were performed using CyberQuake model. The cyclic elastoplastic constitutive model is fully detailed in the companion paper. Through these case studies, we demonstrate the importance of using appropriate constitutive modelling when the part played by nonlinear phenomena is preponderant. The need to account for 3D kinematics (i.e. the three components of the input motion), is also demonstrated, even though a 1D geometry is considered, as the plastic coupling existing between components of motion during the earthquake, strongly affects the seismic soil response.  相似文献   
2.
Gravity walls retaining dry soil are modeled as a system of two bodies: (a) the gravity wall that slides along the wall-foundation soil boundary and (b) the critical soil wedge in the soil behind the wall. The strength of the system is defined by both the frictional and the cohesional components of resistance. The angle of the prism of the critical soil wedge behind the wall is obtained using the limit equilibrium method. The model accounts for changes in the geometry of the backfill soil behind the wall by considering the displacements at the end of each time step under limit equilibrium. The model shows that the standard (single) block model is over-conservative for the extreme case of critical-to-applied-seismic acceleration ratios less than about 0.30, but works well for cases where this ratio ranges between 0.5 and 0.8. The model is applied to predict the seismic displacement of gravity walls (a) tested in the shaking-table and (b) studied numerically by elaborate elasto–plastic analyses.  相似文献   
3.
The destructive 1999 Chi–Chi earthquake (Mw 7.5) was the largest inland earthquake in Taiwan in the 20th century. Several observations witness the non-linear seismic soil response in sediments during the earthquake. In fact, large settlements as well as evidence of liquefaction attested by sand boils and unusual wet ground surface were observed at some sites. In this paper, we present a seismic response simulation performed with CyberQuake software on a site located within the Chang-Hwa Coastal Industrial Park during the 1999 Chi–Chi earthquake in Taiwan. A non-linear multi-kinematic dynamic constitutive model is implemented in the software. Computed NS, EW and UP ground accelerations obtained with this model under undrained and two-phase assumptions, are in good agreement with the corresponding accelerations recorded at seismic station TCU117, either for peak location, amplitudes or frequency content. In these simulations, liquefaction occurs between depths 1.3 and 11.3 m, which correspond to the observed range attested by in place penetration tests and other liquefaction analyses. Moreover, the computed shear wave velocity profile is very close to post-earthquake shear wave velocity profile derived from correlations with CPT and SPT data. Finally, it is shown that in non-linear computations, even though a 1D geometry is considered, it is necessary to take into account the three components of the input motion.  相似文献   
4.
The use of geosynthetic to reinforce soft-soils or peat in order to improve the load-settlement response is quite common. In such cases a layer of engineered fill, reinforced with a geosynthetic, is placed on the soft ground and the load is supported by the granular fill. In the present paper a procedure is outlined for the analysis of such a geothynthetic reinforced soil system. The granular fill is assumed to be rigid-strain hardening plastic and the soft soil is modeled by a Winkler type foundation. The grid is considered to be “rough” on its surfaces and be linearly elastic when subjected to tensile stresses. A simple transform function is used in the analysis. Through the analysis performed the influence of various factors such as the degree of overconsolidation (through compaction) of the fill, its dilatational properties, and the tangent modulus of the geogrid are investigated and discussed.  相似文献   
5.
The CamClay model has been extensively used in numerous research programmes for constitutive modelling in Soil Mechanics during the past quarter of a century. Several derivations of this model are now available and routinely used for numerical simulations in the geomechanical engineering field. However, to the authors' knowledge the thermodynamical basis of this model in its original form has never been established, at least in a modern thermodynamics framework. The thermodynamics principle proposed by Ziegler is very expedient for this purpose as the non-associated flow rule may be considered. This approach is applied to the CamClay model with the Roscoe dilatancy rule. A dissipation function and free energy are specified in terms of kinematic variables (i.e. state and internal variables), and the material response is derived entirely from these functions.  相似文献   
6.
Between 1996 and 2001 an experimental set up in a chaparral community near San Diego, CA, examined various plant and ecosystem responses to CO2 concentrations ranging from 250 to 750 μl l− 1. These experiments indicated a significant increase in soil C sequestration as CO2 rose above the ambient levels. In 2003, two years after the cessation of the CO2 treatments, we returned to this site to examine soil C dynamics with a particular emphasis on stability of specific pools of C. We found that in as little as two years, C content in the surface soils (0–15 cm) of previously CO2 enriched plots had dropped to levels below those of the ambient and pretreatment soils. In contrast, C retained in response to CO2 enrichment was more durable in the deeper soil layers (> 25 cm deep) where both organic and inorganic C were on average 26% and 55% greater, respectively, than C content of ambient plots. Using stable isotope tracers, we found that treatment C represented 25% of total soil C and contributed to 55% of soil CO2 efflux, suggesting that most of treatment C is readily accessible to decomposers. We also found that, C present before CO2 fumigation was decomposed at a faster rate in the plots that were exposed to elevated CO2 than in those exposed to ambient CO2 levels. To our knowledge, this is the first report that allows for a detail accounting of soil C after ceasing CO2 treatments. Our study provides a unique insight to how stable the accrued soil C is as CO2 increases in the atmosphere.  相似文献   
7.
8.
The effect of heat on clay behaviour is characterized by non-linearity and irreversibility. Due to the complex influence of temperature, thermomechanical factors have to be taken into account for the numerical simulation of the behaviour of such materials. A cyclic thermo-viscoplastic model is developed for this purpose. It includes thermal hardening and the evolution of yield surfaces with temperature. From the physical point of view, it is built on the basis of available experimental results for a temperature range in which no phase change occurs. Conceptually, it is the generalization of an isothermal multimechanism cyclic model. A thermoplastic formulation of the model is also derived. The results obtained from numerical simulations compare well with experiments. © 1997 by John Wiley & Sons, Ltd.  相似文献   
9.
Numerical simulation of liquefaction effects on seismic SSI   总被引:3,自引:0,他引:3  
The present paper deals with the influence of soil non-linearity, introduced by soil liquefaction, on the soil–foundation–structure interaction phenomena. The objective is to reveal the beneficial or unfavourable effects of the non-linear SSI on both structural drift and settlement of a given structure. Factors such as the signal modification due to liquefaction, and ratios of fundamental frequencies of soil, structure and signal may play an important role on the damage of the structure. The importance of each of these factors is evaluated through a significant parametric study. A 2D coupled finite element modelling is carried out using an elastoplastic multi-mechanism model to represent the soil behaviour. This paper presents the research work we did in the framework of the European Community project NEMISREF (New methods of mitigation of seismic risk on existing foundations, GRDI-40457), to study possible retrofitting measures using GEFDYN computational tools.  相似文献   
10.
This paper provides an insight into the numerical simulation of soil–structure interaction (SSI) phenomena studied in a shaking table facility. The shaking table test is purposely designed to confirm the ability of the numerical substructure technique to simulate the SSI phenomenon. A model foundation–structure system with strong SSI potential is embedded in a dry bed of sand deposited within a purpose designed shaking-table soil container. The experimental system is subjected to a strong ground motion. The numerical simulation of the complete soil–foundation–structure system is conducted in the linear viscoelastic domain using the substructure approach. The matching of the experimental and numerical responses in both frequency and in time domain is satisfying. Many important aspects of SSI that are apparent in the experiment are captured by the numerical simulation. Furthermore, the numerical modelling is shown to be adequate for practical engineering design purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号