首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
地质学   19篇
  2018年   1篇
  2016年   1篇
  2008年   1篇
  2007年   1篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有19条查询结果,搜索用时 78 毫秒
1.
Carbonate phases, some rich in Na2O and comparatively rich in SrO and BaO, occur as inclusions in perovskite and calzirtite (Ca2Zr5Ti2O16) in the carbonatite of the Guli complex, Siberia. This is the first record of alkali carbonates, akin to nyerereite [Na2Ca(CO3)2], in plutonic igneous rocks. The inclusion populations suggest that the parental magma of the complex was Ca-rich but developed Na-rich differentiates during the latest stages. This points to the dominant calcic carbonatites of the complex not being derivatives of alkali-rich parental carbonatites. These alkali-rich carbonate inclusions (and rare inclusions of djerfisherite) have been preserved due to the resistance of perovskite and calzirtite to processes of leaching, hydrothermal alteration and weathering.  相似文献   
2.
Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum.

The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10–25 wt.%), CaO (5–20 wt.%), TiO2 (3–10 wt.%) and K2O (1–4 wt.%), but low SiO2 (22–37 wt.%) and Al2O3 (2–6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation.

The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and timing of Late Proterozoic processes in the North Atlantic region that this volatile-rich, deep-seated igneous activity was a distal effect of the breakup of Rodinia. This occurred during and/or after the rift-to-drift transition that led to the opening of the Iapetus Ocean.  相似文献   

3.
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields.  相似文献   
4.
The Late Archean Blake River Group is a thick succession of predominantly mafic volcanic rocks within the southern zone of the Abitibi greenstone belt. It contains a number of silicic volcanic centers of different size, including the large Noranda volcanic complex, which is host to 17 past-producing volcanogenic massive sulfide deposits. The Noranda complex consists of a 7- to 9-km-thick succession of bimodal mafic and felsic volcanic rocks erupted during five major cycles of volcanism. Massive sulfide formation coincided with a period of intense magmatic activity (cycle III) and the formation of the Noranda cauldron. Hydrothermal alteration in these rocks is interpreted to reflect large-scale hydrothermal fluid flow associated with rapid crustal extension and rifting of the volcanic complex. The alteration includes abundant albite, chlorite, epidote and quartz (silicification), which exhibit broad stratigraphic and structural control and correlate with previously mapped whole-rock oxygen isotope zonation. The Mine Sequence volcanic rocks are characterized by abundant iron-rich chlorite (Fe/Fe+Mg >0.5), hydrothermal amphibole (ferroactinolite) and coarse-grained epidote of clinozoisite composition (<10 wt% Fe 2O 3). Volcanic rocks of the pre-cauldron sequences, which contain only subeconomic stringer mineralization, are characterized by less abundant chlorite and mainly fine-grained epidote (>10 wt% Fe 2O 3) lacking the clinozoisite solid solution. Alteration in the Mine Sequence volcanic rocks persists along strike well beyond the limits of the main ore deposits (as far as several tens of kilometers) and can be readily distinguished from greenschist facies metamorphic assemblages at a regional scale. The lack of similar alteration in the pre-cauldron sequences is consistent with limited 18O-depletion and suggests that the early history of the volcanic complex did not support large-scale, high-temperature fluid flow in these rocks. Comparisons with a much smaller, barren volcanic complex in nearby Ben Nevis township reveal important differences in the alteration mineralogy between volcanoes of different size, with implications for area selection during regional-scale mineral exploration. The Ben Nevis Complex consists of a 3- to 4-km-thick succession of mafic, intermediate and felsic volcanic rocks centered on a small subvolcanic intrusion. Alteration of the volcanic rocks comprises mainly low-temperature assemblages of prehnite, pumpellyite, magnesium-rich chlorite (Fe/Fe+Mg <0.5), iron-rich epidote (>10 wt% Fe 2O 3) and calcite. Actinolite ± magnetite alteration occurs proximal to the intrusive core of the complex, but the limited extent of this alteration indicates only local high-temperature fluid circulation adjacent to the intrusion. A distal zone of carbonate alteration is located 4–6 km from the center of the volcano. Although iron-bearing carbonates are present locally within this zone, the absence of siderite argues against a high-temperature origin for this alteration. These observations do not offer positive encouragement for the existence of a fossil geothermal system of sufficient size or intensity to have produced a large massive sulfide deposit.  相似文献   
5.
Three thin, syn-caldera ash flow tuffs of the Suswa volcano, Kenya, contain pumiceous clasts and globules of trachytic glass, and clasts rich in carbonate globules, in a carbonate ash matrix. Petrographic and textural evidence indicates that the carbonate was magmatic. The trachyte is metaluminous to mildly peralkaline and varies from nepheline- to quartz-normative. The carbonate is calcium-rich, with high REE and F contents. The silicate and carbonate fractions have similar 143Nd/144Nd values, suggesting a common parental magma. Chondrite-normalized REE patterns are consistent with a carbonate liquid being exsolved from a silicate liquid after alkali feldspar fractionation. Sr isotopic and REE data show that the carbonate matrix of even the freshest tuffs interacted to some degree with hydrothermal and/or meteoric water. A liquid immiscibility relationship between the trachyte and carbonate is indicated by the presence of sharp, curved menisci between them, the presence of carbonate globules in silicate glass and of fiamme rich in carbonate globules separated by silicate glass, and by the fact that similar phenocryst phases occur in both melts. It is inferred that the carbonate liquid separated from a carbonated trachyte magma prior to, or during, caldera collapse. Viscosity differences segregated the magma into a fraction comprising silicate magma with scattered carbonate globules, and a fraction comprising carbonate globules in a silicate magmatic host.Explosive disruption of the magma generated silicate-and carbonate-rich clasts in a carbonate matrix. The silicate liquid was disaggregated by explosive disruption and texturally appears to have been budding-off into the carbonate matrix. After emplacement, the basal parts of the flows welded slightly and flattened. The Suswa rocks represent a rare and clear example of a liquid immiscibility relationship between trachyte and carbonate melts.  相似文献   
6.
Diamond-bearing kimberlites in the Fort à la Corne region, east–central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U–Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.  相似文献   
7.
Mineralium Deposita - The massive sulfide deposits of the Kristineberg area, Sweden, occur within a 2- to 3-km-thick succession of felsic volcaniclastic rocks belonging to the Skellefte Group. The...  相似文献   
8.
The concentrations of platinum-group elements (PGE; Os, Ir, Ru, Pd and Pt) and Re, and the Os isotopic compositions were determined for 33 lithospheric mantle peridotite xenoliths from the Somerset Island kimberlite field. The Os isotopic compositions are exclusively less radiogenic than estimates of bulk-earth (187Os/188Os as low as 0.1084) and require a long-term evolution in a low Re–Os environment. Re depletion model ages (TRD) indicate that the cratonic lithosphere of Somerset Island stabilised by at least 2.8 Ga, i.e. in the Neoarchean and survived into the Mesozoic to be sampled by Cretaceous kimberlite magmatism. An Archean origin also is supported by thermobarometry (Archean lithospheric keels are characterised by >150 km thick lithosphere), modal mineralogy and mineral chemistry observations. The oldest ages recorded in the lithospheric mantle beneath Somerset Island are younger than the Mesoarchean (>3 Ga) ages recorded in the Slave craton lithospheric mantle to the southwest [Irvine, G.J., et al., 1999. Age of the lithospheric mantle beneath and around the Slave craton: a Rhenium–Osmium isotopic study of peridotite xenoliths from the Jericho and Somerset Island kimberlites. Ninth Annual V.M. Goldschmidt Conf., LPI Cont., 971: 134–135; Irvine, G.J., et al., 2001. The age of two cratons: a PGE and Os-Isotopic study of peridotite xenoliths from the Jericho kimberlite (Slave craton) and the Somerset Island kimberlite field (Churchill Province). The Slave–Kaapvaal Workshop, Merrickville, Ontario, Canada]. Younger, Paleoproterozoic, TRD model ages for Somerset Island samples are generally interpreted as the result of open system behaviour during metasomatic and/or magmatic processes, with possibly the addition of new lithospheric material during tectono-thermal events related to the Taltson–Thelon orogen. PGE patterns highly depleted in Pt and Pd generally correspond to older Archean TRD model ages indicating closed system behaviour since the time of initial melt extraction. Younger Proterozoic TRD model ages generally correspond to more complex PGE patterns, indicating open system behaviour with possible sulfide or melt addition. There is no correlation between the age of the lithosphere and depth, at Somerset Island.  相似文献   
9.
A wide variety of geological data and geological observations by numerous geoscientists do not support a two-stage crater excavation and in-fill model, or a champagne glass-shaped geometry for the 169 or 140/141 kimberlite bodies in the Fort à la Corne kimberlite field, Saskatchewan as described by Berryman, A., Scott Smith, B.H., Jellicoe, B., (2004). Rather, these kimberlite bodies are best described as polygenetic kimberlite tephra cones and tuff rings with associated feeder vents of variable geometry as shown by previous workers for the 169 kimberlite, the 140/141 kimberlite and the Star kimberlite. The domal tephra cone geometry is preserved due to burial by conformable Cretaceous marine mudstones and siltstones and is not an artifact of Quaternary glacial processes.  相似文献   
10.

Kimberlites from the Diavik and Ekati diamond mines in the Lac de Gras kimberlite field contain abundant large (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) crystals. We present the first extensive mineral chemical dataset for these megacrysts from Diavik and Ekati and compare their compositions to cratonic peridotites and megacrysts from the Slave and other cratons. The Diavik and Ekati Cr-diopside and Cr-pyrope megacrysts are interpreted to belong to the Cr-rich megacryst suite. Evidence for textural, compositional, and isotopic disequilibrium suggests that they constitute xenocrysts in their host kimberlites. Nevertheless, their formation may be linked to extensive kimberlite magmatism and accompanying mantle metasomatism preceding the eruption of their host kimberlites. It is proposed that the formation of megacrysts may be linked to failed kimberlites. In this scheme, the Cr-rich megacrysts are formed by progressive interaction of percolating melts with the surrounding depleted mantle (originally harzburgite). As these melts percolate outwards, they may contribute to the introduction of clinopyroxene and garnet into the depleted mantle, thereby forming lherzolite. This model hinges on the observation that lherzolitic clinopyroxenes and garnets at Lac de Gras have compositions that are strikingly similar to those of the Cr-rich megacrysts, in terms of major and trace elements, as well as Sr isotopes. As such, the Cr-rich megacrysts may have implications for the origin of clinopyroxene and garnet in cratonic lherzolites worldwide.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号