首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   7篇
地质学   2篇
自然地理   4篇
  2022年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2006年   3篇
  2005年   1篇
  2003年   3篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 796 毫秒
1.
2.
3.
Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a ‘territorial’ approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysical-engineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard.  相似文献   
4.
The causes of damage observed in archeological records or preserved monuments are often difficult to be determined unequivocally, particularly when the possibility of secondary earthquake damage exists. Such secondary damage has been previously proposed for the Roman Praetorium, the governor’s palace in the center of Cologne. Ongoing excavations since 2007 revealed additional damage. The existing ground that has been uncovered and documented extends the affected area to 175?×?180 m. We present a comprehensive virtual model of the excavation area based on 200 3D laserscans together with a systematic analysis of the damage patterns and an improved model of the terrain during Roman/Medieval times including geotechnical parameters of the subsurface. Five locations with different damage patterns, including a Roman sewer, the octagonal central part of the Praetorium, a section with strongly inclined massive walls, a 13 m deep deformed well, a collapsed hypocaust, and damages in the Medieval mikveh are analyzed in detail. We use site-specific synthetic strong ground motion seismograms to test the possibility of earthquake-induced ground failures as a cause for the observed damage. This subsurface model is also used to test the possibility of hydraulically-induced damages by seepage and erosion of fine-grained material from stray sand. Heavy rainstorms can induce a direct stream of surface water through the fine sand layers to the ground water table. Simulated ground motion for assumed worst-case earthquake scenarios do not provoke slope instability at the level necessary to explain the structural damages.  相似文献   
5.
6.
7.
Larissa, the capital of Thessaly, is located in the eastern part of Central Greece, at the southern border of a Late Quarternary graben, the Tyrnavos Basin. Palaeoseismological, morphotectonic, and geophysical investigations as well as historical and instrumental records show evidences for seismic activity in this area. Previous investigations documented the occurrence of several moderate to strong earthquakes during Holocene time on active faults with recurrence intervals of a few thousand years. The historical and instrumental records suggest a period of seismic quiescence during the last 400–500 years. The present archaeoseismological research, based on a multidisciplinary approach is devoted to improve the knowledge on past earthquakes, which occurred in the area. This study focuses on damages observed on the walls of the scene building of the Great Theatre of Larissa. The Theatre was built at the beginning of the third century BC and consists of a semicircular auditorium, an almost circular arena and a main scene building. Archaeological and historical investigations document a partial destruction of the theatre during the second to first century BC. Recent excavations show that the building complex after it was repaired suffered additional structural damages, probably from seismic loading. The damages investigated in detail are displacements, rotations and ruptures of numerous blocks at the walls of the scene building. In order to test the earthquake hypothesis as cause of the damages a simplified seismotectonic model of the Tyrnavos Basin and its surroundings was used with a composite earthquake source model to calculate synthetic seismograms at the Larissa site for various earthquake scenarios. Horizontal to vertical seismic ratio (HVSR) measurements in the theatre and its vicinity were used to estimate local site effects. The synthetic seismograms are then used as input accelerations for a finite element model of the walls, which simulates seismically induced in-plane sliding within the walls. Results show that some of the surrounding faults have the potential to produce seismic ground motion that can induce in-plane sliding of blocks. Model calculations were used to constrain the characteristics of the ground acceleration and infer the causative fault and earthquake by comparing the calculated and observed distribution of the displacements of the blocks. Ground motions with a PGA at the site of 0.62–0.82 g, which could be induced by an M 5.8–6.0 earthquake on the nearby Larissa Fault, would be sufficient to explain the damage.  相似文献   
8.
Klaus-G. Hinzen   《Tectonophysics》2003,377(3-4):325-356
Fault plane solutions (FPS) from 110 earthquakes in the northern Rhine area with local magnitudes, ranging from 1.0 to 6.1, and occurring between 1976 and 2002 are determined. FPS are retrieved from P-wave first motions using a grid search approach allowing a detailed exploration of the parameter space. The influence of the 1D velocity model on take-off angles and resulting FPS is examined. All events were relocated with a recently developed minimum 1D model of the velocity structure [J. Geophys. Res. (2003)]. Rose diagrams of the orientation of P, T and B axes show a clear preference of trends of P and T axes at N292°E and N27°E, respectively. The majority of B axes trend in northerly directions. Plunges of P and T axes are mostly around 45° while most B axes are subhorizontal. The main direction of the maximum horizontal stress directly inferred from the fault plane solutions is N118°E.To calculate the orientations of the principal stress axes and the shape of the stress tensor, the inversion method of Gephard and Forsyth [J. Geophys. Res. 89 (1984) 9305] was applied to the whole data set and to several subsets of data. The subsets were formed by grouping events from various geological and tectonic areas and by grouping events into different depth ranges. The subset areas include the Lower Rhine Embayment, the Rhenish Massif, the middle Rhine area, the Neuwied Basin and the area known as the Stavelot–Venn Massif. Inversion of the entire data set shows some ambiguity between a strike-slip and extensional stress regime, with a vertical axis for the medium principal stress and a trend of N305°E and N35°E for the σ1 and σ3 axis, respectively, as the best fitting tensor. Earthquakes from the Lower Rhine Embayment and, to some degree, from the middle Rhine area indicate an extensional stress regime. In the Lower Rhine Embayment, plunge and trend of the σ1 axis are 76° and N162°E and for the σ3 axis 7° and N42°E. The best fitting solution for the area of the Stavelot–Venn Massif is a strike-slip regime with subhorizontal σ1 and σ3 axes with a trend of N316°E and N225°E, respectively. Stress orientations found here agree overall with the results from earlier studies based on smaller data sets. The directions of the maximum and minimum horizontal stresses inverted from focal mechanisms agree well with the stress field predicted by the European Stress Map. This confirms earlier interpretations that the stress field of the Rhine Graben system is controlled by plate driving forces acting on the plate boundaries. However, amplitudes of the stresses change on a local scale and with depth. Estimates of the absolute magnitude of principal stresses favor a normal faulting regime in the shallow crust (above 12-km depth) and a strike-slip regime in the lower crust.  相似文献   
9.
Journal of Seismology - A steadily increasing number of citizen seismological stations, often located in populated areas, record a plethora of man-made events. These events are especially of...  相似文献   
10.
In the late 1970s, the hypothesis originated that earthquakes played a decisive role in the decline of the Mycenaean civilization at the end of the Late Bronze Age. The late excavator of Tiryns in the Argolid/Greece, Klaus Kilian, presented evidence for earthquake‐related damage to Mycenaean structures and considered four terracotta figures and two ceramic vessels lying on a floor of a potential cult room (later 12th century B.C.) in the Lower Citadel as “earthquake victims.” The broken figures were confined to a small area on the cult room's floor in front of a bench. We assess the archaeological data and test the plausibility of earthquake‐induced toppling of the objects with engineering seismological models. Dimensions and physical properties of the models were taken from the originals. In our simulations the models are virtually placed on a bench, and are exposed to earthquake ground motions based on records from recent Greek earthquakes. We test the artifacts’ toppling behavior and compare the final position of the fallen objects with the original find spots. Statistical analysis of 74,250 model calculations with highly varied ground motion parameters and bench heights reveal only a small probability that the find situation of the objects was caused by an earthquake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号