首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
地质学   11篇
  2017年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2002年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The postulated difference in W isotopic composition of the Earth’s core of ∼2 εW units, compared to the bulk silicate earth (BSE) has previously been used to search for evidence of core-mantle interaction (CMI) in ocean island basalts (OIB). The absence of W isotope anomalies has thus been taken as evidence that CMI does not occur. However, the addition of subducted sediment with high W to the sources of OIB could obscure a core signature. This possibility brings into question the utility of W isotopes as tracers for CMI. To accurately consider the effects of sediment addition to mantle sources of OIB with respect to W requires improved constraints on the abundances of W in subducting sediment. Here, we present high-precision W abundance data (and other HFSE) for a suite of sediments from the Banda subduction regime in East Indonesia. Subducting East Indonesian sediments have trace element concentrations that resemble those of average upper continental crust (UCC), making these sediments valuable to consider as typical of subducted sediments. Average W abundances of 2.1 ppm, corrected for carbon content coupled with current models of 0.5% core addition and 1% sediment addition to EM1 or HIMU plume, suggest that a model hybrid source should exhibit values of εW = −0.24 with ∼25 ppb W. Prior studies have not reported such low W isotopic compositions or high estimated W concentrations present in the sources of either Hawaiian or French Polynesian lavas, so such large additions of core material to these plume sources seems unlikely. Given these constraints, core contributions to these source, if present, can be no more than ∼0.1%.  相似文献   
2.
Sr isotopic compositions and Rb / Sr ratios of three USGS glasses (BHVO-2G, BIR-1G, BCR-2G) are identical to those of the original USGS reference materials. NKT-1G and TB-1G give values of 0.70351 and 0.70558, respectively. Pb isotopic ratios were measured by the standard-sample bracketing technique on an MC-ICP-MS, which give results that are comparable in accuracy and reproducibility to double spike analyses. However, assessment of the reproducibility of the technique is hampered by inhomogeneous contamination of all USGS reference materials analysed. This contamination is likely to be the reason why the USGS glasses do not all have the same Pb isotopic composition as their unfused originals. Powdered glasses, distributed for characterisation of the glasses by bulk analytical techniques, do not all have the same Pb isotopic compositions as the solid glass material, and can therefore not be used for this purpose.  相似文献   
3.
Poikiloblastic harzburgite xenoliths (P-type) from Borée, France are characterised by large (>1 cm), essentially unstrained olivines and high equilibrium temperatures (>1200 °C). Mineralogical data, trace element abundances and Sr-Nd-O isotopes of the constituent minerals are consistent with formation as a result of melt percolation-reactions in a lherzolite precursor during lithospheric erosion by an upwelling plume. This petrogenetic model contrasts with previous models involving isochemical recrystallisation from a granular lherzolite precursor (G-type) or derivation as metacumulates from tholeiitic magmas. Numerical simulation of percolation reactions at the lithosphere-plume boundary using the plate model of Vernières et al. (1997) indicates that the different textured xenoliths may represent mantle from different levels in a percolation-reaction column. If correct then the P-type harzburgites resulted from pyroxene-dissolving and olivine-producing reactions at increasing melt fraction (>3%) at the lower part of column (base of the lithosphere), whereas the G-type lherzolites were located within the low-porosity domain (<0.1%) above a permeability barrier, and are formed through a melt-rock reaction at decreasing melt mass. Given the very low melt fraction, the REE fractionation in this zone is controlled by chromatographic effects coupled with source effects of reaction. The variations in porosity, melt/rock ratio and melt-rock reaction mechanism are believed to be responsible for the diversity of REE patterns and striking correlation between REE abundance and texture in Borée xenoliths. Received: 15 June 1997 / Accepted: 7 January 1998  相似文献   
4.
对采自冲绳海槽中部海底的浮岩样品和邻近陆地樱岛火山的安山岩样品进行了温度 (常温 - 15 0 0℃ )与压力 (常压 - 2 .4 GPa)实验 ,测得在较低温度 -压力条件下 (<1GPa,<80 0℃ )浮岩样品的纵波速度小于安山岩样品的纵波速度 ,在较高温度 -压力条件下 (>1GPa,>80 0℃ )二者的纵波速度接近一致 (5 .9km /s)。 1GPa/80 0℃是浮岩样品和安山岩样品的热动力相变点 ,推测该点的深度大于 18km。  相似文献   
5.
Isotope dilution determinations of Lu, Hf, Zr, Ta and W are reported for nine test portions (five for W) of NIST SRM 610 and 612 glass wafers. Additionally, all test portions were analysed for their Hf isotope compositions. In general, high field strength elemental (HFSE) distributions in NIST SRM 610 and 612 were reproducible to ~± 1%, except for Zr (± 5%) in NIST SRM 612, and absolute reported concentrations agreed with previously published values, but with higher precision. The slightly worse reproducibility of Zr in NIST SRM 612 compared to other HFSE is interpreted to result from analytical scatter, rather than sample inhomogeneity. The analyses demonstrated elemental homogeneity for both glass wafers for samples of 1–2 mg with respect to the precision of the method, i.e., ± 1% or better. Average Hf isotope compositions for both glass wafers agreed within uncertainty and the weighted average of all determinations yielded a mean 176Hf/177Hf ratio of 0.282111 ± 0.000009 (95% confidence level). However, although mean values for NIST SRM 610 and 612 agreed within analytical limits, NIST SRM 610 test portions showed a tendency of systematically elevated isotope composition of ~ 0.5 ?Hf units when compared to NIST SRM 612, which may indicate a slightly more radiogenic Hf isotope composition of NIST SRM 610. The results of this study suggest that NIST SRM 610 and 612 are valuable calibrators for HFSE in situ analyses within the given uncertainties.  相似文献   
6.
铜镍硫化物矿床和钒钛磁铁矿矿床是镁铁-超镁铁杂岩重要的矿床类型,但二者共生的情况在国内还不多见。新疆北部这类铜镍-钒钛铁复合型矿化岩体较为发育,目前已发现有香山、牛毛泉、土墩南和哈拉达拉等4个岩体属于此类。它们的成岩时代多集中在早二叠世,出露面积在2.8~22km~2,介于通道型铜镍矿化小岩体和大型层状岩体之间,韵律构造发育;岩石组合为超基性-基性-中性岩类,以出现浅色的闪长岩或淡色辉长岩为特点,岩石中金属矿物氧化物(钛铁矿、磁铁矿)和硫化物(黄铁矿、磁黄铁矿、黄铜矿,有时有镍黄铁矿)共存和共生;含矿岩石组合和岩石化学特征与典型铜镍硫化物矿床和钒钛磁铁矿矿床相比,具有重叠和过渡特征;稀土和微量元素特征反映出杂岩体不同岩石类型可能具有相同或相似岩浆来源,是经过强烈分异和演化的产物。新疆北部这类复合型矿化,与北疆地区典型铜镍矿床和典型钒钛磁铁矿矿床,共同构成了新疆北部后碰撞幔源岩浆矿床成矿谱系。  相似文献   
7.
atu Tara is an active potassic volcano in the eastern Sunda arc. Its leucite-bearing rock suite can be subdivided into two groups, one less evolved with Th<20 ppm, the other more evolved with Th>20 ppm. 87Sr/86Sr, δ18O and trace-element systematics in the less evolved group suggests that existence of parental magmas with different mantle origins. The mantle below Batu Tara is most likely heterogeneous and several source components are involved in magma genesis. Trace element and isotopic compositions of Batu Tara and adjacent volcanoes are consistent with the involvement of a subducted sedimentary/crustal component as well as MORB and OIB mantle, the latter with geochemical characteristics comparable to the mantle underlying Muriah (Java). Melt extraction from this complex mixture is envisioned as a two-stage process: partial melts of the crust-contaminated MORB mantle mix in the mantle wedge with partial melts of OIB domains. Different mixtures of these two melts provide the parental magmas that enter the volcanic plumbing system, where crystallization, hybridization and refilling processes occur. The calcalkaline volcanoes in the arc segment show stronger signatures for a subducted crustal component than Batu Tara, which displays a greater influence from the OIB mantle source. The potassium enrichment can therefore be attributed to contributions both from the enriched mantle and from subducted crustal material. Mantle-type δ18O values of the Batu Tara magmas indicate that the mantle wedge below potassic orogenic volcanoes is not necessarily strongly enriched in 18O.  相似文献   
8.
Four volcanoes in the Pantar Strait, the westernmost part of the extinct sector of the east Sunda arc, show remarkable across-arc variation in elemental abundances (K2O: 1.2 to 4.3%), trace element ratios (Pb/Ce: 0.4 to 0.18; Ce/Yb: 20 to 55) and isotope ratios (143Nd/144Nd: 0.51263 to 0.51245; 87Sr/86Sr: 0.7053 to 0.7068; 206Pb/204Pb: 19.29 to 19.15). Pb isotopes are decoupled from Sr and Nd isotopes, with the frontal volcanoes showing the higher Nd and Pb and lower Sr isotopic ratios. The isotopic and trace element ratios of the volcanic samples are best explained by modification of a MORB-type source (with Indian Ocean island basalt-type Pb isotopic characteristics) by a fluid and a partial melt of subducted continental material (SCM). The frontal volcano contains the highest proportion of the fluid component, with a small contribution of partial melt. The source of the rear-arc volcano is strongly influenced by a partial melt of SCM that had undergone a previous dehydration event, by which it lost most of its fluid-mobile elements such as Pb. The SCM partial melt was in equilibrium with both rutile and garnet, whereas mantle melting took place in the presence of residual mica. The relatively large across-arc increase in incompatible elements can be explained by a combination of increasing addition of SCM partial melt, changing mantle wedge fertility and smaller degrees of partial melting toward the rear of the arc. Comparison with a more westerly across-arc transect shows that the relatively low 143Nd/144Nd ratios of the frontal volcano, and the decoupling of Pb from Sr and Nd isotopes are unique to the Pantar Strait volcanoes. This is likely to reflect magma generation in a collisional environment, where the leading edge of the Australian continent, rather than subducted sediment, contributes to the magma source.  相似文献   
9.
Lead isotope ratios were used to trace the origin of Pb in a soil–plant (Urtica dioica)–snail (Cepaea nemoralis) food chain in two polluted locations in the floodplains of the rivers Meuse and Rhine (Biesbosch National Park) and one reference location in the Netherlands. Lead isotope ratios and concentrations were determined in soil, litter, plant leaves, snails, rainwater and airborne particulate matter. Anthropogenic Pb in the soils of all locations was found to be derived from deposition of Pb polluted river sediments. Discharging rivers influenced the reference location before being reclaimed from the sea. The river sediment contains anthropogenic Pb from various sources related to industrial activities in the hinterland of the rivers Meuse and Rhine. Lead in the atmosphere contributed substantially to Pb pollution and Pb transfer in plant leaves and snails in all locations. Lead pollution in plant leaves and snails can be explained from a mixture of river sediment-Pb and atmospheric Pb from various transfer routes that involve low concentrations.  相似文献   
10.
Lavas and pyroclastic products of Nisyros volcano (Aegean arc, Greece) host a wide variety of phenocryst and cumulate assemblages that offer a unique window into the earliest stages of magma differentiation. This study presents a detailed petrographic study of lavas, enclaves and cumulates spanning the entire volcanic history of Nisyros to elucidate at which levels in the crust magmas stall and differentiate. We present a new division for the volcanic products into two suites based on field occurrence and petrographic features: a low-porphyricity andesite and a high-porphyricity (rhyo)dacite (HPRD) suite. Cumulate fragments are exclusively found in the HPRD suite and are predominantly derived from upper crustal reservoirs where they crystallised under hydrous conditions from melts that underwent prior differentiation. Rarer cumulate fragments range from (amphibole-)wehrlites to plagioclase-hornblendites and these appear to be derived from the lower crust (0.5–0.8 GPa). The suppressed stability of plagioclase and early saturation of amphibole in these cumulates are indicative of high-pressure crystallisation from primitive hydrous melts (≥ 3 wt% H2O). Clinopyroxene in these cumulates has Al2O3 contents up to 9 wt% due to the absence of crystallising plagioclase, and is subsequently consumed in a peritectic reaction to form primitive, Al-rich amphibole (Mg# > 73, 12–15 wt% Al2O3). The composition of these peritectic amphiboles is distinct from trace element-enriched interstitial amphibole in shallower cumulates. Phenocryst compositions and assemblages in both suites differ markedly from the cumulates. Phenocrysts, therefore, reflect shallow crystallisation and do not record magma differentiation in the deep arc crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号