首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
测绘学   2篇
地球物理   27篇
地质学   34篇
海洋学   8篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2008年   9篇
  2007年   6篇
  2006年   1篇
  2005年   4篇
  2002年   1篇
  2001年   4篇
  1992年   1篇
  1989年   2篇
  1984年   2篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
1.
In this study, heavy metal contents of samples from Gumusler creek in Turkey were studied and the metal contamination characteristics were investigated. In this respect, considering the pollutant sites in the area, systematic sediment samples were collected in a zone starting from the manifestation part of the water to the entrance of the Karasu creek in Gumusler town. Samples were taken from lower section of the river bed at 30 stations along Gumusler creek, 13 km in length and their heavy metal contents were analyzed with XRF Spectrometer. Correlation coefficients, element coefitic coefficient correlation, dendogram hierarchical cluster, model summary and Annova analysis statistical methods were applied to data. Strong positive correlations were determined for some elements which are believed to have possibly the same origin. In addition, mineralizations in the area are thought to cause variation in metal contents. Results of chemical analysis show that soil limit values and clark values were exceeded. The heavy metal accumulation in the creek is believed to be derived from non-operated Sb-Hg-W and Fe quarries.  相似文献   
2.
The Quaternary evolution of the Gulf of İzmit, situated on the tectonically active North Anatolian Fault Zone (NAFZ), was investigated using seismic reflection, paleontologic, and sediment textural data. On the basis of seismic stratigraphic and sedimentologic-paleontologic interpretations, four depositional units were distinguished within the Plio-Quaternary sequence of the Gulf of İzmit. According to these data, Plio-Quaternary deposits supplied from the northern terrestrial area started to accumulate during a progradational phase, in a south-facing half-graben. A coarse-grained sedimentary unit prograding into the gulf from the south since 200 ka b.p. indicates a dramatic variation in the evolution of the gulf, with the initiation of a new strike-slip fault of the NAFZ and a corresponding uplift of the Armutlu Peninsula in the south of the gulf. During the evolution of this fault from a wide shear zone consisting of right-stepped strike-slip faults and pull-apart basins to a localized principal fault zone, sediments were deposited under the influence of northerly prograding terrestrial and shallow-marine conditions due to relative sea-level fluctuations in the Marmara Sea. During this period, the Gulf of İzmit was invaded mainly by Mediterranean and partly by Black Sea waters. In the latest glacial period, shallow areas in the gulf became subaerially exposed, whereas the central and western sub-basins of the gulf turned into lakes. The present evolution of the Gulf of İzmit is controlled by the after effects of the new rupture of the NAFZ and the estuarine nature of the gulf environment.  相似文献   
3.
Landslides are common natural hazards in the seismically active North Anatolian Fault Zone of Turkey. Although seismic activity, heavy rainfall, channel incisions, and anthropogenic effects are commonly the main triggers of landslides, on March 17, 2005, a catastrophic large landslide in Sivas, northeastern of Turkey, the Kuzulu landslide, was triggered by snowmelt without any other precursor. The initial failure of the Kuzulu landslide was rotational. Following the rotational failure, the earth material in the zone of accumulation exhibited an extremely rapid flow caused by steep gradient and high water content. The Agnus Creek valley, where Kuzulu village is located, was filled by the earth-flow material and a landslide dam was formed on the upper part of Agnus Creek. The distance from the toe of the rotational failure down to the toe of the earth flow measured more than 1800 m, with about 12.5 million m3 of displaced earth material. The velocity of the Kuzulu landslide was extremely fast, approximately 6 m/s. The main purposes of this study are to describe the mechanism and the factors conditioning the Kuzulu landslide, to present its environmental impacts, and to produce landslide-susceptibility maps of the Kuzulu landslide area and its near vicinity. For this purpose, a detailed landslide inventory map was prepared and geology, slope, aspect, elevation, topographic-wetness index and stream-power index were considered as conditioning factors. During the susceptibility analyses, the conditional probability approach was used and a landslide-susceptibility map was produced. The landslide-susceptibility map will help decision makers in site selection and the site-planning process. The map may also be accepted as a basis for landslide risk-management studies to be applied in the study area.  相似文献   
4.
In this study, we investigated the structural properties of Urfa stone (US) doped with erbium oxide (Er2O3). Solid US was powdered by using an agate mortar, and its elemental composition was determined using inductive coupling plasma (ICP) methods. Varying amounts of Er2O3 (5, 10, 20, 30, and 40%) were added as a dopant to the US powder using mechanical alloying methods. The resultant samples were sintered at 1000 °C for 1 h. The structural properties of the Er2O3-doped US samples were subsequently investigated using X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and photoluminescence methods. Results from the XRD analysis of the Er2O3-doped US powder indicated two crystalline phases: (1) calcium oxide (CaO) or lime and (2) Er2O3. After the samples were sintered at 1000 °C, CaO, Er2O3, calcium carbonate (CaCO3), and mixed crystalline phases were observed. Results from the FTIR analysis of the Er2O3-doped US samples indicated absorption bands at 711.91, 872.08, and 1396.87 cm?1 in the spectra. Finally, photoluminescence analysis results indicated a shift in the emission and excitation bands to longer and shorter wavelengths, respectively, in the solid state (non-aqueous media) US-Er complex.  相似文献   
5.
The Ayazmant Fe–Cu skarn deposit is located approximately 20 km SE of Ayval?k or 140 km N of Izmir in western Turkey. The skarn occurs at the contact between metapelites and the metabasites of the Early Triassic K?n?k Formation and the porphyritic hypabyssal intrusive rocks of the Late Oligocene Kozak Intrusive Complex. The major, trace, and rare earth-element geochemical analysis of the igneous rocks indicate that they are I-type, subalkaline, calc-alkaline, metaluminous, I-type products of a high-level magma chamber, generated in a continental arc setting. The 40Ar–39Ar isochron age obtained from biotite of hornfels is 20.3 ± 0.1 Ma, probably reflecting the age of metamorphic–bimetasomatic alteration which commenced shortly after intrusion into impure carbonates. Three stages of skarn formation and ore development are recognized: (1) Early skarn stage (Stage I) consisting mainly of garnet with grossular-rich (Gr75–79) cores and andradite-rich (Gr36–38) rims, diopside (Di94–97), scapolite and magnetite; (2) sulfide-rich skarn (Stage II), dominated by chalcopyrite with magnetite, andraditic garnet (Ad8489), diopside (Di6575) and actinolite; and (3) retrograde alteration (Stage III) dominated by actinolite, epidote, orthoclase, phlogopite and chlorite in which sulfides are the main ore phases. 40Ar–39Ar age data indicate that potassic alteration, synchronous or postdating magnetite–pyroxene–amphibole skarn, occurred at 20.0 ± 0.1 Ma. The high pyroxene/garnet ratio, plus the presence of scapolite in calc-silicate and associated ore paragenesis characterized by magnetite (± hematite), chalcopyrite and bornite, suggests that the bulk of the Ayazmant skarns were formed under oxidized conditions. Oxygen isotope compositions of pyroxene, magnetite and garnet of prograde skarn alteration indicate a magmatic fluid with δ18O values between 5.4 and 9.5‰. On the basis of oxygen isotope data from mineral pairs, the early stage of prograde skarn formation is characterized by pyroxene (Di94–97)-magnetite assemblage formed at an upper temperature limit of 576 °C. The lower temperature limit for magnetite precipitation is estimated below 300 °C, on the basis of magnetite–calcite pairs either as fracture-fillings or massive ore in recrystallized limestone-marble. The sulfide assemblage is dominated by chalcopyrite with subordinate molybdenite, pyrite, cubanite, bornite, pyrrhotite, galena, sphalerite and idaite. Gold–copper mineralization formed adjacent to andradite-dominated skarn which occurs in close proximity to the intrusion contacts. Native gold and electrum are most abundant in sulfides, as fine-grained inclusions; grain size with varying from 5 to 20 µm. Sulfur isotope compositions obtained from pyrrhotite, pyrite, chalcopyrite, sphalerite and galena form a narrow range between ? 4.8 and 1.6‰, suggesting the sulfur was probably mantle-derived or leached from magmatic rocks. Geochemical data from Ayazmant shows that Cu is strongly associated with Au, Bi, Te, Se, Cd, Zn, Pb, Ni and Co. The Ayazmant mineralizing system possesses all the ingredients of a skarn system either cogenetic with, or formed prior to a porphyry Cu(Au–Mo) system. The results of this study indicate that the Aegean Region of Turkey has considerable exploration potential for both porphyry-related skarns and porphyry Cu and Au mineralization.  相似文献   
6.
7.
In this study, landslide susceptibility assessments were achieved using logistic regression, in a 523 km2 area around the Eastern Mediterranean region of Southern Turkey. In reliable landslide susceptibility modeling, among others, an appropriate landslide sampling technique is always essential. In susceptibility assessments, two different random selection methods, ranging 78–83% for the train and 17–22% validation set in landslide affected areas, were applied. For the first, the landslides were selected based on their identity numbers considering the whole polygon while in the second, random grid cells of equal size of the former one was selected in any part of the landslides. Three random selections for the landslide free grid cells of equal proportion were also applied for each of the landslide affected data set. Among the landslide preparatory factors; geology, landform classification, land use, elevation, slope, plan curvature, profile curvature, slope length factor, solar radiation, stream power index, slope second derivate, topographic wetness index, heat load index, mean slope, slope position, roughness, dissection, surface relief ratio, linear aspect, slope/aspect ratio have been considered. The results showed that the susceptibility maps produced using the random selections considering the entire landslide polygons have higher performances by means of success and prediction rates.  相似文献   
8.
Tanyaş  Hakan  Görüm  Tolga  Fadel  Islam  Yıldırım  Cengiz  Lombardo  Luigi 《Landslides》2022,19(6):1405-1420

On November 14, 2016, the northeastern South Island of New Zealand was hit by the magnitude Mw 7.8 Kaikōura earthquake, which is characterized by the most complex rupturing mechanism ever recorded. The widespread landslides triggered by the earthquake make this event a great case study to revisit our current knowledge of earthquake-triggered landslides in terms of factors controlling the spatial distribution of landslides and the rapid assessment of geographic areas affected by widespread landsliding. Although the spatial and size distributions of landslides have already been investigated in the literature, a polygon-based co-seismic landslide inventory with landslide size information is still not available as of June 2021. To address this issue and leverage this large landslide event, we mapped 14,233 landslides over a total area of approximately 14,000 km2. We also identified 101 landslide dams and shared them all via an open-access repository. We examined the spatial distribution of co-seismic landslides in relation to lithologic units and seismic and morphometric characteristics. We analyzed the size statistics of these landslides in a comparative manner, by using the five largest co-seismic landslide inventories ever mapped (i.e., Chi-Chi, Denali, Wenchuan, Haiti, and Gorkha). We compared our inventory with respect to these five ones to answer the question of whether the landslides triggered by the 2016 Kaikōura earthquake are less numerous and/or share size characteristics similar to those of other strong co-seismic landslide events. Our findings show that the spatial distribution of the Kaikōura landslide event is not significantly different from those belonging to other extreme landslide events, but the average landslide size generated by the Kaikōura earthquake is relatively larger compared to some other large earthquakes (i.e., Wenchuan and Gorkha).

  相似文献   
9.
We have updated the active fault map of Turkey and built its database within GIS environment. In the study, four distinct active fault types, classified according to geochronological criteria and character, were delineated on the 1:25,000 base map of Turkey. 176 fault segments not included in the former active fault map of Turkey, have been identified and documented. We infer that there are 485 single fault segments which are substantially potential seismic sources. In total 1964 active-fault base-maps were transferred into the GIS environment. Each fault was attributed with key parameters such as class, activity, type, length, trend, and attitude of fault plane. The fault parameters are also supported by slip-rate and seismogenic depth inferred from available GPS, seismological and paleoseismological data. Additionally, expected maximum magnitude for each fault segment was estimated by empirical equations. We present the database in a parametric catalogue of fault segments to be of interest in earthquake engineering and seismotectonics. The study provides essential geological and seismological inputs for regional seismic hazard analysis of all over Turkey and its vicinity.  相似文献   
10.
The Minim-Martap plateau bauxite deposit, located between the Minim and the Martap villages, is one of the 11 plateaus within the Minim-Martap bauxite region. The plateau has an elevation of 1294 m above sea level, with three to more 30 m thickness of bauxite horizon. These plateaus were formed as result of supergene weathering of volcanic rocks occurring as dissected flow basalt landscapes that form relatively flat plateau rising steeply from the surrounding granites. The bauxite deposit of the plateau is lateritic, with the surface of the plateau been completely covered by indurated caps. Seventeen bauxite samples were collected from the plateau and prepared for geochemical analysis. Whole rock analysis was carried out using the X-ray Fluorescence technique and ICP-MS was used for trace elements investigation. Statistical analysis reveals that average values of Al2O3 (54.87%), Fe2O3 (7.17%), SiO2 (2.44%), and TiO2 (4.54%) indicate the plateau bauxite deposit is an of a world class standard with very little impurities compared to the standard major element contents of bauxite (>?40% A12O3, less than <?20% Fe2O3, and less than <?8% combined SiO2). Abundant trace elements include Zr, Ce, Sr, V, Ba, La, Nd, Ga, and Nb. Weathering due to chemical alteration indices using the Ruxton ratio and CIA approaches revealed the plateau have undergone intense weathering process that formed the bauxite deposit. Three different classification systems indicate it as a low iron-rich bauxite deposit. Precursor rock investigation indicates the origin of the bauxite is mafic, basaltic andesite igneous rocks with intermediate pH (basic–acidic characteristic).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号