首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33351篇
  免费   626篇
  国内免费   428篇
测绘学   859篇
大气科学   3094篇
地球物理   6871篇
地质学   11697篇
海洋学   2518篇
天文学   7313篇
综合类   84篇
自然地理   1969篇
  2020年   194篇
  2019年   214篇
  2018年   539篇
  2017年   522篇
  2016年   746篇
  2015年   483篇
  2014年   732篇
  2013年   1508篇
  2012年   825篇
  2011年   1134篇
  2010年   948篇
  2009年   1354篇
  2008年   1188篇
  2007年   1053篇
  2006年   1122篇
  2005年   988篇
  2004年   935篇
  2003年   945篇
  2002年   940篇
  2001年   813篇
  2000年   855篇
  1999年   730篇
  1998年   694篇
  1997年   721篇
  1996年   643篇
  1995年   599篇
  1994年   528篇
  1993年   471篇
  1992年   458篇
  1991年   462篇
  1990年   459篇
  1989年   426篇
  1988年   398篇
  1987年   493篇
  1986年   462篇
  1985年   491篇
  1984年   600篇
  1983年   589篇
  1982年   533篇
  1981年   527篇
  1980年   477篇
  1979年   463篇
  1978年   471篇
  1977年   410篇
  1976年   375篇
  1975年   371篇
  1974年   429篇
  1973年   402篇
  1972年   257篇
  1971年   243篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
2.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   
3.
4.
5.
Abstract— The Vredefort Granophyre represents impact melt that was injected downward into fractures in the floor of the Vredefort impact structure, South Africa. This unit contains inclusions of country rock that were derived from different locations within the impact structure and are predominantly composed of quartzite, feldspathic quartzite, arkose, and granitic material with minor proportions of shale and epidiorite. Two of the least recrystallized inclusions contain quartz with single or multiple sets of planar deformation features. Quartz grains in other inclusions display a vermicular texture, which is reminiscent of checkerboard feldspar. Feldspars range from large, twinned crystals in some inclusions to fine‐grained aggregates that apparently are the product of decomposition of larger primary crystals. In rare inclusions, a mafic mineral, probably biotite or amphibole, has been transformed to very fine‐grained aggregates of secondary phases that include small euhedral crystals of Fe‐rich spinel. These data indicate that inclusions within the Vredefort Granophyre were exposed to shock pressures ranging from <5 to 8–30 GPa. Many of these inclusions contain small, rounded melt pockets composed of a groundmass of devitrified or metamorphosed glass containing microlites of a variety of minerals, including K‐feldspar, quartz, augite, low‐Ca pyroxene, and magnetite. The composition of this devitrified glass varies from inclusion to inclusion, but is generally consistent with a mixture of quartz and feldspar with minor proportions of mafic minerals. In the case of granitoid inclusions, melt pockets commonly occur at the boundaries between feldspar and quartz grains. In metasedimentary inclusions, some of these melt pockets contain remnants of partially melted feldspar grains. These melt pockets may have formed by eutectic melting caused by inclusion of these fragments in the hot (650 to 1610 °C) impact melt that crystallized to form the Vredefort Granophyre.  相似文献   
6.
7.
The Voigt function and its derivatives are represented by means of series in Hermite polynomials. The equations obtained can be used both for numerical calculations of these functions and for analytical research.Translated from Astrofizika, Vol. 39, No. 4, pp. 619–625, October–December, 1996.  相似文献   
8.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   
9.
A spectacular change in the lower corona on the south-west limb has been found in solar images taken by the Yohkoh soft X-ray telescope. The event is characterized by a large topological change in magnetic field and a large intensity decrease observed after the X1. 1/1B flare on 9 November, 1991. A coronal mass ejection (CME) was observed by the Mark III K-coronameter (MK3) at the HAO/Mauna Loa Observatory. Both the MK3 (white-light) and soft X-ray observations showed that one leg of this CME was located above the flare site. An interplanetary shock associated with this event was observed by Pioneer Venus Orbiter, and, possibly, by IMP-8.Also Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309, U.S.A.  相似文献   
10.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号