首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   7篇
  国内免费   3篇
测绘学   2篇
大气科学   10篇
地球物理   32篇
地质学   72篇
海洋学   23篇
天文学   10篇
综合类   1篇
自然地理   24篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   12篇
  2011年   7篇
  2010年   10篇
  2009年   16篇
  2008年   10篇
  2007年   7篇
  2006年   16篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
1.
δ34S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a 33S-36S double spike for instrumental mass fractionation correction, and has been applied to snow pit samples collected from the Inilchek Glacier, Kyrgyzstan and from Summit, Greenland. These δ34S determinations provide the first high-resolution seasonal data for these sites, and are used to estimate seasonal sulfate sources. Deuterium (δD) and oxygen (δ18O) isotope data show that the Inilchek and Summit snow pit samples represent precipitation over ≈20 months.The δ34S values for the Inilchek ranged from +2.6 ± 0.4‰ to +7.6 ± 0.4‰ on sample sizes ranging from 0.3 to 1.8 μmol S. δ34S values for Greenland ranged from +3.6 ± 0.7‰ to +13.3 ± 5‰ for sample sizes ranging from 0.05 to 0.29 μmol S. The concentration ranged from 92.6 ± 0.4 to 1049 ± 4 ng/g for the Inilchek and 18 ± 9 to 93 ± 6 ng/g for the Greenland snow pit. Anthropogenic sulfate dominates throughout the sampled time interval for both sites based on mass balance considerations. Additionally, both sites exhibit a seasonal signature in both δ34S and concentration. The thermal ionization mass spectrometric technique has three advantages compared to gas source isotopic methods: (1) sample size requirements of this technique are 10-fold less permitting access to the higher resolution S isotope record of low concentration snow and ice, (2) the double spike technique permits δ34S and S concentration to be determined simultaneously, and (3) the double spike is an internal standard.  相似文献   
2.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   
3.
In April 1997 and 1998 the significance of sedimentation as a sink for epipelagic dimethylsulphoniopropionate (DMSP) production and as a source for marine sediments was reassessed using a newly designed sediment trap. The behaviour of the traps in immersion was monitored continuously and the collection efficiency was evaluated with 234Th measurements. Net DMS(P) fluxes were corrected for some physical and biological losses during the whole sedimentation process providing reliable estimates of gross DMSP fluxes. It is shown that daily losses by sedimentation account for between 0.1% and 16% of seawater particulate DMSP (DMSPp) standing stocks, and between 3% and 75% of daily DMSPp production. In the Malangen fjord we observed temporal increases of DMSP production and standing stocks which resulted also in increases of DMSP vertical fluxes and DMS(P) concentrations at the sediment surface. This result illustrates how tight the coupling can be between pelagos and benthos, and confirms that DMS(P) concentration in the sediment was a reliable diagnostic indicator of vertical export from overlying waters in Malangen fjord. In Ullsfjord, however, DMS(P) concentrations in the sediment were poorly indicators of Phaeocystis pouchetii export during the early stage of growth of a bloom. The high load of DMS(P) in Balsfjord's sediments could neither be attributed to local vertical sedimentation nor to short-term lateral advection of fresh DMSP-containing phytoplanktonic material, and provides indication that this tracer sometimes also can be misleading. The highest loads of DMS(P) in sediments and the fastest rates of sedimentation occurred in the Southern Bight of the North Sea.  相似文献   
4.
5.
The Bjerkreim-Sokndal layered intrusion is part of the Rogaland anorthosite Province of southern Norway and is made of cumulates of the anorthositemangerite-charnockite suite. This study presents experimental phase equilibrium data for one of the finegrained jotunite (Tjörn locality) occurring along its northwestern lobe. These experimental data show that a jotunitic liquid similar in composition to the Tjörn jotunite, but slightly more magnesian and with a higher plagioclase component is the likely parent of macrocyclic units (MCU)III and IV of the intrusion. The limit of the olivine stability field in the experimentally determined phase diagram as well as comparison of the Al2O3 content of low-Ca pyroxenes from experiments and cumulates (1.5%) yields a pressure of emplacement 5 kbar. Experimentally determined Fe-Ti oxide equilibria compared to the order of cumulus arrival in the intrusion show that the oxygen fugacity was close to FMQ (fayalite-magnetite-quartz) during the early crystallization. It subsequently decreased relative to this buffer when magnetite disappeared from the cumulus assemblage and then increased until the reentry of this mineral. Calculated densities of experimental liquids show a density increase with fractionation at 7, 10 and 13 kbar due to the predominance of plagioclase in the crystallizing assemblage. At 5 kbar and 1 atm (FMQ-1), where plagioclase is the liquidus phase, density first increases and then drops when olivine (5 kbar) or olivine+ilmenite (1 atm: FMQ-1) precipitate. At 1 atm and NNO (nickel-nickel oxide), the presence of both magnetite and ilmenite as near liquidus phases induces a density decrease. In the Bjerkreim magma chamber, oxides are early cumulus phases and liquid density is then supposed to have decreased during fractionation. This density path implies that new influxes of magma emplaced in the chamber were both hotter and denser than the resident magma. The density contrast inferred between plagioclase and the parent magma shows that this mineral was not able to sink in the magma, suggesting anin situ crystallization process.  相似文献   
6.
7.
Eruptions beneath ice sheets and glaciers can generate hazardous ash plumes and powerful meltwater floods, as demonstrated by the recent Icelandic eruptions at Eyjafjallajökull in 2010 and at Grímsvötn in 2011. A key scientific objective for volcanologists is to better understand the factors controlling subglacial eruptions, but the eruptions are mostly hidden beneath ice that is often hundreds of metres thick, thereby preventing direct observation. New approaches are therefore needed to reconstruct the factors driving explosive activity and the response of the overlying ice. The dissolved volatile content, preserved in glassy volcanic rock, offers a useful means of reconstructing palaeo‐ice thicknesses. However, for subglacial rhyolite at least, there seems to be little or no correlation between loading pressure and eruptive style. Instead, there is a strong correlation between the pre‐eruptive volatile content, degassing path and eruptive behaviour. It seems that the style of many subglacial eruptions is controlled by the same mechanisms as subaerial eruptions, with explosivity strongly influenced by degassing and magmatic fragmentation.  相似文献   
8.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   
9.
Water column concentrations and benthic fluxes of dissolved inorganic nitrogen (DIN) and oxygen (DO) were measured in the Gulf of St. Lawrence and the Upper and Lower St. Lawrence Estuary (USLE and LSLE, respectively) to assess the nitrogen (N) budget in the St. Lawrence (SL) system, as well as to elucidate the impact of bottom water hypoxia on fixed-N removal in the LSLE. A severe nitrate deficit, with respect to ambient phosphate concentrations (N*∼−10 μmol L−1), was observed within and in the vicinity of the hypoxic bottom water of the LSLE. Given that DO concentrations in the water column have remained above 50 μmol L−1, nitrate reduction in suboxic sediments, rather than in the water column, is most likely responsible for the removal of fixed N from the SL system. Net nitrate fluxes into the sediments, derived from pore water nitrate concentration gradients, ranged from 190 μmol m−2 d−1 in the hypoxic western LSLE to 100 μmol m−2 d−1 in the Gulf. The average total benthic nitrate reduction rate for the Laurentian Channel (LC) is on the order of 690 μmol m−2 d−1, with coupled nitrification-nitrate reduction accounting for more than 70%. Using average nitrate reduction rates derived from the observed water column nitrate deficit, the annual fixed-N elimination within the three main channels of the Gulf of St. Lawrence and LSLE was estimated at 411 × 106 t N, yielding an almost balanced N budget for the SL marine system.  相似文献   
10.
Four occurrences of highly magnetic soil in Brazil have been analysed with a view to identifying the magnetic minerals and quantifying the soil magnetization. Techniques used include X-ray diffraction, X-ray fluorescence and Mössbauer spectroscopy. This approach leads us to identify several ways that these soils, which have spontaneous magnetization in the range 1s<35 j/t/kg,="" can="" come="">One soil, which forms on dolerite (19.6 wt% Fe2O3), is found to contain fully-oxidized titanomaghemite inherited from the parent rock. This oxide has a canted ferrimagnetic spin structure with s=36 J/T/kg of sample. The three others, formed on very iron-rich rock (50–90 wt% Fe2O3), contain magnetite or maghemite as the magnetic species and in two cases the soil is more magnetic than the parent rock (largely composed of pure hematite).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号