首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   1篇
综合类   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
泛北极地区多年冻土活动层厚度演变   总被引:1,自引:1,他引:0  
深入理解泛北极地区多年冻土活动层厚度的演变, 对于全球碳通量模拟、气候变化预测及泛北极地区冻融风险评估具有重要意义。目前开展的泛北极地区多年冻土活动层厚度模拟与分析, 大多无法全覆盖或空间分辨率过低(25 km或是更大), 在景观尺度(公里级)上的多年冻土活动层厚度变化特征仍有待解析, 尤其是关键基础设施区的活动层厚度变化仍不清楚。本研究基于站点监测数据、MOD11B3地表温度数据、MCD12C1土地覆盖数据, 采用Stefan模型, 在公里级空间分辨率上模拟泛北极地区2001年—2017年多年冻土活动层厚度, 并解析泛北极地区及主要油气区多年冻土活动层厚度时空变化格局及主要原因。研究发现: 2001年—2017年泛北极地区约有78.4%的冻土区域多年冻土活动层厚度呈现增长趋势, 尽管全区多年平均的增长速率为0.22 cm/a (p<0.05), 但具有较强的时空差异性。显著增长区主要集中在加拿大西北部的落基山脉及劳伦琴高原一带以及俄罗斯中西伯利亚高原中部地区, 增加速率主要在0.5—1 cm/a;而减少区主要分布在加拿大的哈得孙湾沿岸平原、拉布拉多高原一带, 俄罗斯的东西伯利亚山地北部、中西伯利亚高原的北部、贝加尔湖以东区域和泰拉尔半岛一带。泛北极地区主要油气区多年冻土活动层厚度也以增加为主, 80%以上的油气区呈现增加趋势, 增长速率在0.1—0.7 cm/a。泛北极地区多年冻土活动层厚度变化与气温变化在空间上具有较好的一致性;积雪厚度与活动层厚度关系复杂;不同植被类型的多年冻土活动层厚度有所差异(林地>草地>稀树草原>灌丛), 且多年冻土活动层厚度变化与植被转化方向一致。该成果将有助于深入理解北半球高纬度多年冻土区冻融格局, 尤其可为冻土区的油气设施冻融风险识别与防控提供参考。  相似文献   
2.
精细尺度的人口分布是当前人口地理学研究的热点和难点,其在灾害评估、资源配置、智慧城市建设等方面应用广泛。城区是人口分布集中的区域,揭示该区域人口分布差异是精细尺度人口空间化研究的核心内容。本研究基于城市公共设施要素点位数据,对居住建筑斑块进行分类,以社区作为人口数据空间化转换尺度,构建各类别斑块面积与人口数量的多元回归模型,生成了宣州城区居住建筑尺度的人口空间数据,揭示了研究区人口空间分布差异。结果表明:① 该方法生成的人口空间数据精度较高,结果可信。779个居住建筑斑块中,估算人数在合理区内的斑块个数占比为35.4%,相对误差在-20%~20%范围内的斑块个数比例之和为61.2%;城东社区、思佳社区作为精度验证单元,其人数估算的相对误差绝对值低于9%;② 城市公共设施要素数据,尤其是中小学及幼儿园、菜市场及水果店,是建筑物尺度上人口分布的指示性因素,其对多层居住建筑人数的估算精度较高,但对中高层居住建筑人数的估算精度偏低。  相似文献   
3.
城市化进程的加快对区域热环境具有重要影响,热环境的改变会引发一系列生态环境问题,科学地评价城市群热环境安全对于城市发展的规划布局和建设舒适的人居环境具有重要意义。本文利用多期MODIS地表温度数据产品,在构建热环境安全等级分级标准的基础上,对长江三角洲城市群热环境安全格局时空变化特征和土地利用变化的影响进行了探讨。结果表明:① 2015年长江三角洲城市群热环境不安全区域多分布于城市建成区及建成区周围,以南京、上海、杭州和宁波等城市形成的“Z”型区域最明显,临界安全区域多分布于郊区,较安全区域集中分布于长江以北平原区域,安全区域则主要分布于杭州及杭州以南山地、丘陵区,太湖大部分区域以及长江三角洲城市群北部区域;② 2005-2015年长江三角洲城市群热环境不安全区域、临界安全区域、较安全区域和安全区域分别呈现扩张、小幅增长、缩减和先缩减后扩张趋势;③ 土地利用结构中建设用地比例过高和林地比例过低是导致热环境安全等级下降的主要原因,其次,建设用地侵占大量耕地也是导致热环境不安全区域扩张的主要原因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号