首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
测绘学   1篇
大气科学   1篇
  2018年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The availability of freely available moderate-to-high spatial resolution (10–30 m) satellite imagery received a major boost with the recent launch of the Sentinel-2 sensor by the European Space Agency. Together with Landsat, these sensors provide the scientific community with a wide range of spatial, spectral, and temporal properties. This study compared and explored the synergistic use of Landsat-8 and Sentinel-2 data in mapping land use and land cover (LULC) in rural Burkina Faso. Specifically, contribution of the red-edge bands of Sentinel-2 in improving LULC mapping was examined. Three machine-learning algorithms – random forest, stochastic gradient boosting, and support vector machines – were employed to classify different data configurations. Classification of all Sentinel-2 bands as well as Sentinel-2 bands common to Landsat-8 produced an overall accuracy, that is 5% and 4% better than Landsat-8. The combination of Landsat-8 and Sentinel-2 red-edge bands resulted in a 4% accuracy improvement over that of Landsat-8. It was found that classification of the Sentinel-2 red-edge bands alone produced better and comparable results to Landsat-8 and the other Sentinel-2 bands, respectively. Results of this study demonstrate the added value of the Sentinel-2 red-edge bands and encourage multi-sensoral approaches to LULC mapping in West Africa.  相似文献   
2.
Despite decades of research, large multi-model uncertainty remains about the Earth’s equilibrium climate sensitivity to carbon dioxide forcing as inferred from state-of-the-art Earth system models (ESMs). Statistical treatments of multi-model uncertainties are often limited to simple ESM averaging approaches. Sometimes models are weighted by how well they reproduce historical climate observations. Here, we propose a novel approach to multi-model combination and uncertainty quantification. Rather than averaging a discrete set of models, our approach samples from a continuous distribution over a reduced space of simple model parameters. We fit the free parameters of a reduced-order climate model to the output of each member of the multi-model ensemble. The reduced-order parameter estimates are then combined using a hierarchical Bayesian statistical model. The result is a multi-model distribution of reduced-model parameters, including climate sensitivity. In effect, the multi-model uncertainty problem within an ensemble of ESMs is converted to a parametric uncertainty problem within a reduced model. The multi-model distribution can then be updated with observational data, combining two independent lines of evidence. We apply this approach to 24 model simulations of global surface temperature and net top-of-atmosphere radiation response to abrupt quadrupling of carbon dioxide, and four historical temperature data sets. Our reduced order model is a 2-layer energy balance model. We present probability distributions of climate sensitivity based on (1) the multi-model ensemble alone and (2) the multi-model ensemble and observations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号