首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
测绘学   1篇
  2011年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Detecting broad scale spatial patterns across the South American rainforest biome is still a major challenge. Although several countries do possess their own, more or less detailed land-cover map, these are based on classifications that appear largely discordant from a country to another. Up to now, continental scale remote sensing studies failed to fill this gap. They mostly result in crude representations of the rainforest biome as a single, uniform vegetation class, in contrast with open vegetations. A few studies identified broad scale spatial patterns, but only when they managed to map a particular forest characteristic such as biomass. The main objective of this study is to identify, characterize and map distinct forest landscape types within the evergreen lowland rainforest at the sub-continental scale of the Guiana Shield (north-east tropical South-America 10° North-2° South; 66° West-50° West). This study is based on the analysis of a 1-year daily data set (from January 1st to December 31st, 2000) from the VEGETATION sensor onboard the SPOT-4 satellite (1-km spatial resolution). We interpreted remotely sensed landscape classes (RSLC) from field and high resolution remote sensing data of 21 sites in French Guiana. We cross-analyzed remote sensing data, field observations and environmental data using multivariate analysis. We obtained 33 remotely sensed landscape classes (RSLC) among which five forest-RSLC representing 78% of the forested area. The latter were classified as different broad forest landscape types according to a gradient of canopy openness. Their mapping revealed a new and meaningful broad-scale spatial pattern of forest landscape types. At the scale of the Guiana Shield, we observed a spatial patterns similarity between climatic and forest landscape types. The two most open forest-RSLCs were observed mainly within the north-west to south-east dry belt. The three other forest-RSLCs were observed in wetter and less anthropized areas, particularly in the newly recognized “Guianan dense forest arch”. Better management and conservation policies, as well as improvement of biological and ecological knowledge, require accurate and stable representations of the geographical components of ecosystems. Our results represent a decisive step in this way for the Guiana Shield area and contribute to fill one of the major shortfall in the knowledge of tropical forests.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号