首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
测绘学   2篇
地球物理   14篇
地质学   11篇
天文学   1篇
自然地理   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2014年   7篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有30条查询结果,搜索用时 437 毫秒
1.
For spatial analyses, raster land cover/use maps are converted into points, where each point holds attribute of its corresponding land cover/use. However, these are not identical in terms of areas or shapes; thus assigning a point to each isolated shape is not an adequate solution and for that gridding is suggested. Square, hexagon and triangle are among the basic land use gridding systems where each of them has its own advantages in such process. This research aims to compare the systems in providing accurate representations of the original land cover/use maps, assess the data loss while increasing resolution and suggest suitable gridding system. The research finds the errors in area and feature numbers as criteria for selected classes. Modules that find out errors in each scale considering each criterion and class alone are proposed. The modules suggest both the best system for each criterion alone and for combined criteria.  相似文献   
2.
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neotethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well‐preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end‐Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano‐sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.  相似文献   
3.
The North Anatolian Fault Zone (NAFZ), which marks the boundary between Anatolia and the Eurasian plate, is one of the world's most seismically active structures. Although the eastern part of NAFZ has high seismic hazard, there is a lack of geodetic information about the present tectonics of this region. Even though many scientists would like to study this area, geographical and logistical problems make performing scientific research difficult. In order to investigate contemporary neotectonic deformation on the eastern NAFZ and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2003. Geodetic observations were performed in three GPS campaigns in an area of 350 km × 200 km with 12-month intervals. In addition, 14 new GPS stations were measured far from the deforming area. Since this region includes the intersection of the NAFZ and the East Anatolian Fault Zone (EAFZ), deformation is complex and estimating seismic hazard is difficult. One important segment is the Yedisu segment and it has not broken since the 1784 earthquake. After the 1992 Erzincan and 2003 Pulumur earthquakes, the Coulomb stress loading on the Yedisu segment of the NAFZ has increased significantly, emphasizing the need to monitor this region. We computed the horizontal velocity field with respect to Eurasia and strain rates field as well. GPS-derived velocities relative to Eurasia are in the range of 16–24 mm/year, which are consistent with the regional tectonics. The principal strain rates were derived from the velocity field. Results show that strain is accumulating between the NAFZ and EAFZ along small secondary fault branches such as the Ovacik Fault (OF).  相似文献   
4.
Thermal Impact of Residential Ground-Water Heat Pumps   总被引:3,自引:0,他引:3  
A computer simulation study was conducted to quantify the potential thermal impact of residential water-source heat pump usage on ground-water aquifers. In a first phase of the study, weather data for nine locations throughout the country were used to estimate the energy requirements for heating and air conditioning a typical residence. These energy requirements were then translated into the volumetric water demands for a selected heat pump at each location. A representative model aquifer was then defined and its characteristics used, along with the heat pump water requirements and design ΔT's (difference between inlet and outlet water temperature) to identify the important parameters that contribute to heat transfer and to model the movement of the thermal front resulting from injection of heat pump discharge water at the nine locations. The major factor that determines the heat pump thermal impact was found to be the net amount of heat injected into, or removed from an aquifer. Other significant factors included well design, heat pump design ΔT, and physical properties of the aquifer such as thickness, porosity and dispersivity. The study showed that, in climates where winter heating demand is very nearly equal to summer cooling demands, the injection of heat pump discharge water did not cause any significant modification of the ambient model aquifer temperature. However, in hot or cold climates where air conditioning or heating demand dominates, measurable thermal changes occurred in the model aquifer. In most cases, the maximum temperature  相似文献   
5.
6.
There are various types of the windblown sediment traps developed for wind tunnel and field studies. One of the main supports expected from these traps is in measuring surface dust concentrations to appropriately derive flux equations. The measurement performance and accuracy of a trap is very important and depends strictly upon the physical characteristics and the behaviors of dust grains with air flows. This paper presents the measurement results of static pressure distribution (SPD) of wind flow around Vaseline-coated slide (VCS) catchers with an aim of finding out whether or not particle trapping efficiency (η) of the VCS is related to the SPD. The SPD was evaluated by a wind reduction coefficient (R c) in a series of wind tunnel experiments with different VCS settings which have different attachment configurations on a pole. Three VCS configurations were considered: a configuration on a circular plastic pole (CPP) and two configurations on wooden square poles (WSP1 and WSP2, respectively). Thus, the primary contribution of this work was to experimentally analyze the effect of the different attachment configurations on the SPD, and the secondary objective was to determine the effect of the SPD on the η. It was shown that spatial correlation and spatial pattern of the R c were different in the surrounding area of each configuration, and ANOVA and DUNCAN tests indicated that η(s) of WSP1, WSP2, and CPP were different at the significant level of P ≤ 0.05 with the mean of 0.94 ± 0.09, 0.63 ± 0.14, and 1.13 ± 0.07, respectively. Additionally, the amount of PM20, PM40, PM60, PM80, and PM100 trapped by the configurations of WSP1, WSP2, and CPP considerably varied depending upon the particular aerodynamic circumstances associated with every configuration.  相似文献   
7.
Magnetic resonance sounding (MRS) has increasingly become an important method in hydrogeophysics because it allows for estimations of essential hydraulic properties such as porosity and hydraulic conductivity. A resistivity model is required for magnetic resonance sounding modelling and inversion. Therefore, joint interpretation or inversion is favourable to reduce the ambiguities that arise in separate magnetic resonance sounding and vertical electrical sounding (VES) inversions. A new method is suggested for the joint inversion of magnetic resonance sounding and vertical electrical sounding data. A one‐dimensional blocky model with varying layer thicknesses is used for the subsurface discretization. Instead of conventional derivative‐based inversion schemes that are strongly dependent on initial models, a global multi‐objective optimization scheme (a genetic algorithm [GA] in this case) is preferred to examine a set of possible solutions in a predefined search space. Multi‐objective joint optimization avoids the domination of one objective over the other without applying a weighting scheme. The outcome is a group of non‐dominated optimal solutions referred to as the Pareto‐optimal set. Tests conducted using synthetic data show that the multi‐objective joint optimization approximates the joint model parameters within the experimental error level and illustrates the range of trade‐off solutions, which is useful for understanding the consistency and conflicts between two models and objectives. Overall, the Levenberg‐Marquardt inversion of field data measured during a survey on a North Sea island presents similar solutions. However, the multi‐objective genetic algorithm method presents an efficient method for exploring the search space by producing a set of non‐dominated solutions. Borehole data were used to provide a verification of the inversion outcomes and indicate that the suggested genetic algorithm method is complementary for derivative‐based inversions.  相似文献   
8.
We present a new approach to analyse the subsurface water content distribution obtained by inversion of MRS data in terms of resolution and penetration depth. It is based on a singular value decomposition (SVD) of the MRS forward operator to derive the model resolution matrix including regularisation parameters, i.e. including noise conditions. The approach takes loop size, subsurface resistivity distribution and noise conditions as input parameters affecting MRS into account and allows an assessment on resolution and penetration.The application of the new approach shows that the loop diameter must be carefully chosen depending on the investigation site to obtain optimal resolution and penetration. Using the introduced resolution measures the quality and reliability of the estimated model can be assessed.  相似文献   
9.
The universal soil loss equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices by the effective integration of the GIS-based procedures to estimate the factor values on a grid cell basis. This study was performed for five different lands uses of Indağı Mountain Pass, Cankırı to predict the soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Of the USLE factors, rainfall-runoff erosivity factor (USLE-R) and topographic factor (USLE-LS) were greatly involved in GIS. These were surfaced by correcting USLE-R site-specifically using DEM and climatic data and by evaluating USLE-LS by the flow accumulation tool using DEM and watershed delineation tool to consider the topographical and hydrological effects on the soil loss. The study assessed the soil erodibility factor (USLE-K) by randomly sampled field properties by geostatistical analysis. Crop management factor for different land-use/land cover type and land use (USLE-C) was assigned to the numerical values from crop and flora type, canopy and density of five different land uses, which are plantation, recreational land, cropland, forest and grassland, by means of reclassifying digital land use map available for the site. Support practice factor (USLE-P) was taken as a unit assuming no erosion control practices. USLE/GIS technology together with the geostatistics combined these major erosion factors to predict average soil loss per unit area per unit time. Resulting soil loss map revealed that spatial average soil loss in terms of the land uses were 1.99, 1.29, 1.21, 1.20, 0.89 t ha−1 year−1 for the cropland, grassland, recreation, plantation and forest, respectively. Since the rate of soil formation was expected to be so slow in Central Anatolia of Turkey and any soil loss of more than 1 ton ha−1 year−1 over 50–100 years was considered as irreversible for this region, soil erosion in the Indağı Mountain Pass, to the great extent, attained the irreversible state, and these findings should be very useful to take mitigation measures in the site.  相似文献   
10.
The reliability of inversion of apparent resistivity pseudosection data to determine accurately the true resistivity distribution over 2D structures has been investigated, using a common inversion scheme based on a smoothness‐constrained non‐linear least‐squares optimization, for the Wenner array. This involved calculation of synthetic apparent resistivity pseudosection data, which were then inverted and the model estimated from the inversion was compared with the original 2D model. The models examined include (i) horizontal layering, (ii) a vertical fault, (iii) a low‐resistivity fill within a high‐resistivity basement, and (iv) an upfaulted basement block beneath a conductive overburden. Over vertical structures, the resistivity models obtained from inversion are usually much sharper than the measured data. However, the inverted resistivities can be smaller than the lowest, or greater than the highest, true model resistivity. The substantial reduction generally recorded in the data misfit during the least‐squares inversion of 2D apparent resistivity data is not always accompanied by any noticeable reduction in the model misfit. Conversely, the model misfit may, for all practical purposes, remain invariant for successive iterations. It can also increase with the iteration number, especially where the resistivity contrast at the bedrock interface exceeds a factor of about 10; in such instances, the optimum model estimated from inversion is attained at a very low iteration number. The largest model misfit is encountered in the zone adjacent to a contact where there is a large change in the resistivity contrast. It is concluded that smooth inversion can provide only an approximate guide to the true geometry and true formation resistivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号