首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   43篇
  国内免费   7篇
测绘学   21篇
大气科学   57篇
地球物理   247篇
地质学   240篇
海洋学   62篇
天文学   74篇
综合类   1篇
自然地理   52篇
  2023年   6篇
  2021年   17篇
  2020年   10篇
  2019年   14篇
  2018年   31篇
  2017年   23篇
  2016年   22篇
  2015年   24篇
  2014年   29篇
  2013年   49篇
  2012年   32篇
  2011年   36篇
  2010年   48篇
  2009年   40篇
  2008年   39篇
  2007年   40篇
  2006年   28篇
  2005年   30篇
  2004年   29篇
  2003年   32篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1907年   1篇
排序方式: 共有754条查询结果,搜索用时 31 毫秒
1.
This work presents new 87Sr/86Sr and δ88/86SrSRM987 isotopic values of thirteen mineral, vegetal and animal reference materials. Except for UB‐N, all our results are consistent with previously published data. Our results highlight intermediate precisions among the best presently published and a non‐significant systematic shift with the calculated δ88/86SrSRM987 mean values for the three most analysed reference materials in the literature (i.e., IAPSO, BCR‐2 and JCp‐1). By comparison with the literature and between two distinct digestions, a significant bias of δ88/86SrSRM987 values was highlighted for two reference materials (UB‐N and GS‐N). It has also been shown that digestion protocols (nitric and multi‐acid) have a moderate impact on the δ88/86SrSRM987 isotopic values for the Jls‐1 reference materials suggesting that a nitric acid digestion of carbonate can be used without significant bias from partial digestion of non‐carbonate impurities. Different δ88/86SrSRM987 values were measured after two independent Sr/matrix separations, according to the same protocol, for a fat‐rich organic reference material (BCR‐380R) and have been related to a potential post‐digestion heterogeneity. Finally, the δ88/86SrSRM987 value differences measured between animal‐vegetal and between coral‐seawater reference materials agree with the previously published results, highlighting an Sr isotopic fractionation along the trophic chain and during carbonate precipitation.  相似文献   
2.
To analyze the grain size and depositional environment of the foreshore sediments, a study was undertaken on wave refraction along the wide sandy beaches of central Tamil Nadu coast. The nearshore waves approach the coast at 45° during the northeast(NE) monsoon, at 135° during the southwest(SW) monsoon and at 90° during the non-monsoon or fair-weather period with a predominant wave period of 8 and 10 s. A computer based wave refraction pattern is constructed to evaluate the trajectories of shoreward propagating waves along the coast in different seasons. The convergent wave rays during NE monsoon, leads to high energy wave condition which conveys a continuous erosion at foreshore region while divergent and inept condition of rays during the SW and non-monsoon, leads to moderate and less energy waves that clearly demarcates the rebuilt beach sediments through littoral sediment transport. The role of wave refraction in foreshore deposits was understood by grain size and depositional environment analysis. The presence of fine grains with the mixed population, during the NE monsoon reveals that the high energy wave condition and sediments were derived from beach and river environment. Conversely, the presence of medium grains with uniform population, during SW and non-monsoon attested less turbulence and sediments were derived from prolong propagation of onshore-offshore wave process.These upshots are apparently correlated with the in situ beach condition. On the whole, from this study it is understood that beaches underwent erosion during the NE monsoon and restored its original condition during the SW and non-monsoon seasons that exposed the stability of the beach and nearshore condition.  相似文献   
3.
The solar-cycle oscillations of the toroidal and poloidal components of the solar magnetic field in the northern solar hemisphere have a persistent phase difference of about \(\pi \). We propose a symmetrical Kuramoto model with three coupled oscillators as a simple way to understand this anti-synchronization. We solve an inverse problem and reconstruct natural frequencies of the top and bottom oscillators under the conditions of a constant coupling strength and a non-delayed coupling. These natural frequencies are associated with angular velocities of the meridional flow circulation near the solar surface and in the deep layer of the solar convection zone. A relationship between our reconstructions of the shallow and the deep meridional flow speed during recent Solar Cycles 21?–?23 is in agreement with estimates obtained in helioseismology and flux-transport dynamo modeling. The reconstructed top oscillator speed presents significant solar-cycle like variations that agree with recent helioseismical reconstructions. The evolution of reconstructed natural frequencies strongly depends on the coupling strength. We find two stable regimes in the case of strong coupling with a change of regime during anomalous solar cycles. We see the onset of a new transition in Solar Cycle 24. We estimate the admitted range of coupling values and find evidence of cross-equatorial coupling between solar hemispheres not accounted for by the model.  相似文献   
4.
5.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   
6.
Hydrogeology Journal - Monitoring of dissolved methane concentrations in groundwater is required to identify impacts from oil and gas development and to understand temporal variability under...  相似文献   
7.
Hydrogeology Journal - Thanks to recent technological advances, hydrogeologists now have access to large amounts of data acquired in real time. Processing these data using traditional modelling...  相似文献   
8.
Recent hydro‐climatological trends and variability characteristics were investigated for the Lake Naivasha basin with the aim of understanding the changes in water balance components and their evolution over the past 50 years. Using a Bayesian change point analysis and modified Mann–Kendall tests, time series of annual mean, maximum, minimum, and seasonal precipitation and flow, as well as annual mean lake volumes, were analysed for the period 1960–2010 to uncover possible abrupt shifts and gradual trends. Double cumulative curve analysis was used to investigate the changes in hydrological response attributable to either human influence or climatic variability. The results indicate a significant decline in lake volumes at a mean rate of 9.35 × 106 m3 year?1. Most of the river gauging stations showed no evidence of trends in the annual mean and maximum flows as well as seasonal flows. Annual minimum flows, however, showed abrupt shifts and significant (upward/downward) trends at the main outlet stations. Precipitation in the basin showed no evidence of abrupt shifts, but a few stations showed gradual decline. The observed changes in precipitation could not explain the decline in both minimum flows and lake volumes. The findings show no evidence of any impact of climate change for the Lake Naivasha basin over the past 50 years. This implies that other factors, such as changes in land cover and infrastructure development, have been responsible for the observed changes in streamflow and lake volumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
This paper presents a novel dynamical model to analyze the long‐term response of a percussive drilling system. This departs from existing approaches that usually consider a single activation and bit/rock interaction cycle for the analysis of the process performance. The proposed model integrates the axial dynamics of an elastic piston and an elastic drill bit, a motion‐dependent pressure law to drive the piston, and a generalized bit/rock interaction law representative of the dynamic indentation taking place at the bit/rock interface. It applies to down‐the‐hole percussive drilling as well as top‐hole, with minor modifications. The model does not account for the angular motion or the hole cleaning, however. The model is first formulated mathematically; then, a finite‐dimensional approximation is proposed for computations. Numerical analyses of the model response, for a low‐size down‐the‐hole percussive system, follow. The period‐1 stationary response for the reference configuration is studied in detail, and parametric analyses assessing the influence on the rate of penetration of the bit/rock interaction parameters, the feed force, and the percussive activation parameters are conducted. These analyses reveal that the multiscale nature of the process is well captured by the model and recover expected trends for the influence of the parameters. They also suggest that a significant increase of the penetration rate can be achieved by increasing the percussive frequency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
We show in this short note that the method of singular spectrum analysis (SSA) is able to clearly extract a strong, clean, and clear component from the longest available sunspot (International Sunspot Number, ISN) time series (1700?–?2015) that cannot be an artifact of the method and that can be safely identified as the Gleissberg cycle. This is not a small component, as it accounts for 13% of the total variance of the total original signal. Almost three and a half clear Gleissberg cycles are identified in the sunspot number series. Four extended solar minima (XSM) are determined by SSA, the latest around 2000 (Cycle 23/24 minimum). Several authors have argued in favor of a double-peaked structure for the Gleissberg cycle, with one peak between 55 and 59 years and another between 88 and 97 years. We find no evidence of the former: solar activity contains an important component that has undergone clear oscillations of \(\approx90\) years over the past three centuries, with some small but systematic longer-term evolution of “instantaneous” period and amplitude. Half of the variance of solar activity on these time scales can be satisfactorily reproduced as the sum of a monotonous multi-secular increase, a \(\approx90\)-year Gleissberg cycle, and a double-peaked (\(\approx10.0\) and 11.0 years) Schwabe cycle (the sum amounts to 46% of the total variance of the signal). The Gleissberg-cycle component definitely needs to be addressed when attempting to build dynamo models of solar activity. The first SSA component offers evidence of an increasing long-term trend in sunspot numbers, which is compatible with the existence of the modern grand maximum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号