首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   17篇
  国内免费   4篇
测绘学   6篇
大气科学   46篇
地球物理   73篇
地质学   153篇
海洋学   67篇
天文学   64篇
自然地理   20篇
  2023年   4篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   10篇
  2016年   11篇
  2015年   5篇
  2014年   10篇
  2013年   16篇
  2012年   11篇
  2011年   22篇
  2010年   28篇
  2009年   24篇
  2008年   13篇
  2007年   16篇
  2006年   15篇
  2005年   13篇
  2004年   17篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1996年   17篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   10篇
  1981年   3篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   10篇
  1974年   6篇
  1973年   12篇
  1972年   3篇
  1967年   1篇
  1962年   1篇
排序方式: 共有429条查询结果,搜索用时 140 毫秒
1.
Interpretation of CPTU testing in silt is non-trivial because of the partially drained conditions that are likely to occur during penetration. A better understanding of the pore pressure generation/dissipation is needed in order to obtain reliable design parameters. Following a previous study using X-ray computed tomography (micro-CT) with volumetric digital image correlation (3D-DIC) that clearly showed the formation of distinct dilation and compression areas around the cone; the present work takes a closer look at those areas in order to link volumetric behavior to changes in soil fabric. High-resolution 2D backscattered electron images of polished thin sections prepared from frozen samples at the end of penetration are used. The images have a spatial resolution of 0.4 µm/pixel that allow a clear identification of grains and pore spaces. Image processing techniques are developed to quantify local porosity and obtain the statistical distribution of the particle orientation for the zones around the cone tip and shaft. It is shown that the formation of compaction regions is related to the ability of the grains to rearrange and align along a well-defined preferred orientation forming a more closed-fabric characterized by high anisotropy values, while zones of dilation are associated with a more open packing with grains randomly oriented and with large voids within. These observations suggested that for a saturated soil, water will move from a compressive zone to a neighboring dilative zone, creating a short drainage path. By shedding light on the link between soil fabric and drainage patterns, this study contributes toward a better understanding of the measured macro-response during CPTU tests on silt.  相似文献   
2.
In hydrological modelling of catchments, wherein streams are groundwater-fed, an accurate representation of groundwater processes and their interaction with surface water is crucial. With this purpose, a coupled model was recently developed linking SWAT (Soil and Water Assessment Tool) with the fully-distributed groundwater model MODFLOW (Modular Groundwater Flow). In this study, SWAT and SWAT-MODFLOW were applied to a Danish groundwater-dominant catchment, simulating groundwater abstraction scenarios and assessing the benefits and drawbacks of SWAT-MODFLOW. Both models demonstrated good performance. However, SWAT-MODFLOW provided more realistic outputs when simulating abstraction: the decrease in streamflow was similar to the volume of water abstracted, while in SWAT the impact was negligible. SWAT also showed impacts on streamflow only when abstractions were taken from the shallow aquifer, not from the deep aquifer. Overall, SWAT-MODFLOW demonstrated wider possibilities for groundwater analysis, providing more insights than SWAT in supporting decision making in relation to environmental assessment.  相似文献   
3.
A carbon‐rich melt fragment from the Gardnos impact structure has been studied for a better understanding of the preservation and structural form(s) of carbon that have been processed by impact melting. The carbon was analyzed in situ in its original petrographic context within the melt fragment, using high‐resolution techniques including focused ion beam‐transmission electron microscopy and electron energy loss spectroscopy. Results show that the carbon is largely uniform and has a nanocrystalline grain size. The Gardnos carbon has a graphitic structure but with a large c/a ratio indicating disorder. The disorder could be a result of rapid heating to high temperatures during impact, followed by rapid cooling, with not enough time to crystallize into highly ordered graphite. However, temperature distribution during impact is extremely heterogenous, and the disordered Gardnos carbon could also represent material that avoided extreme temperatures, and thus, it was preserved. Understanding the structure of carbon during terrestrial impacts is important to help determine if the history of carbon within extraterrestrial samples is impact related. Furthermore, the degree of preservation of carbon during impact is key for locating and detecting organic compounds in extraterrestrial samples. This example from Gardnos, together with previous studies, shows that not all carbon is lost to oxidation during impact but that impact melting can encapsulate and preserve carbon where it is available.  相似文献   
4.
Hydrological connectivity describes the physical coupling (linkages) of different elements within a landscape regarding (sub‐) surface flows. A firm understanding of hydrological connectivity is important for catchment management applications, for example, habitat and species protection, and for flood resistance and resilience improvement. Thinking about (geomorphological) systems as networks can lead to new insights, which has also been recognized within the scientific community, seeing the recent increase in the use of network (graph) theory within the geosciences. Network theory supports the analysis and understanding of complex systems by providing data structures for modelling objects and their linkages, and a versatile toolbox to quantitatively appraise network structure and properties. The objective of this study was to characterize and quantify overland flow connectivity dynamics on hillslopes in a humid sub‐Mediterranean environment by using a combination of high‐resolution digital‐terrain models, overland flow sensors and a network approach. Results showed that there are significant differences between overland flow connectivity on agricultural areas and semi‐natural shrubs areas. Significant positive correlations between connectivity and precipitation characteristics were found. Significant negative correlations between connectivity and soil moisture were found, most likely because of soil water repellency and/or soil surface crusting. The combination of structural networks and dynamic networks for determining potential connectivity and actual connectivity proved a powerful tool for analysing overland flow connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
Spectral analysis enhances the ability to analyze groundwater flow at a steady state by separating the top boundary condition into its periodic forms. Specifically, spectral analysis enables comparisons of the impact of individual spatial scales on the total flow field. New exact spectral solutions are presented for analyzing 3D groundwater flow with an arbitrarily shaped top boundary. These solutions account for depth-decaying, anisotropic and layered permeability while utilizing groundwater flux or the phreatic surface as a top boundary condition. Under certain conditions, groundwater flow is controlled by topography. In areas where the groundwater flow is controlled by the topography, the unknown water table is often approximated by the topography. This approximation induces a systematic error. Here, the optimal resolution of digital elevation models (DEMs) is assessed for use as a top boundary in groundwater flow models. According to the analysis, the water-table undulation is smoother than the topography; therefore, there is an upper limit to the resolution of DEMs that should be used to represent the groundwater surface. The ability to represent DEMs of various spectral solutions was compared and the results indicate that the fit is strongly dependent on the number of harmonics in the spectral solution.  相似文献   
6.
The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland?CScotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.  相似文献   
7.
8.
The rheology of debris flows is difficult to characterize owing to the varied composition and to the uneven distribution of the components that may range from clay to large boulders, in addition to water. Few studies have addressed debris flow rheology from observational, experimental, and theoretical viewpoints in conjunction. We present a coupled rheological‐numerical model to characterize the debris flows in which cohesive and frictional materials are both present. As a first step, we consider small‐scale artificial debris flows in a flume with variable percentages of clay versus sand, and measure separately the rheological properties of sand–clay mixtures. A comparison with the predictions of a modified version of the numerical model BING shows a reasonable agreement between measurements and simulations. As application to a field case, we analyse a recent debris flow that occurred in Fjærland (Western Norway) for which much information is now available. The event was caused by a glacial lake outburst flood (GLOF) originating from the failure of a moraine ridge. In a previous contribution (Breien et al., Landslides, 2008 , 5: 271–280) we focused on the hydrological and geomorphological aspects. In particular we documented the marked erosion and reported the change in sediment transport during the event. In contrast to the laboratory debris flows, the presence of large boulders and the higher normal pressure inside the natural debris flow requires the introduction of a novel rheological model that distinguishes between mud‐to–clast supported material. We present simulations with a modified BING model with the new cohesive‐frictional rheology. To account for the severe erosion operated by the debris flow on the colluvial deposits of Fjærland, we also suggest a simple model for erosion and bulking along the slope path. Numerical simulations suggest that a self‐sustaining mechanism could partly explain the extreme growth of debris flows running on a soft terrain.  相似文献   
9.
We propose linear response functions to separately estimate the sea-level contributions of thermal expansion and solid ice discharge from Greenland and Antarctica. The response function formalism introduces a time-dependence which allows for future rates of sea-level rise to be influenced by past climate variations. We find that this time-dependence is of the same functional type, R(t) ~ t α, for each of the three subsystems considered here. The validity of the approach is assessed by comparing the sea-level estimates obtained via the response functions to projections from comprehensive models. The pure vertical diffusion case in one dimension, corresponding to α =  ?0.5, is a valid approximation for thermal expansion within the ocean up to the middle of the twenty first century for all Representative Concentration Pathways. The approximation is significantly improved for α =  ? 0.7. For the solid ice discharge from Greenland we find an optimal value of α =  ?0.7. Different from earlier studies we conclude that solid ice discharge from Greenland due to dynamic thinning is bounded by 0.42 m sea-level equivalent. Ice discharge induced by surface warming on Antarctica is best captured by a positive value of α = 0.1 which reflects the fact that ice loss increases with the cumulative amount of heat available for softening the ice in our model.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号