首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   5篇
测绘学   13篇
大气科学   27篇
地球物理   35篇
地质学   34篇
海洋学   3篇
天文学   10篇
自然地理   5篇
  2023年   1篇
  2021年   2篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   15篇
  2012年   1篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1965年   1篇
  1963年   2篇
  1961年   2篇
  1959年   1篇
  1958年   5篇
  1957年   1篇
  1955年   3篇
  1954年   4篇
  1953年   1篇
  1951年   1篇
  1950年   2篇
  1949年   1篇
  1921年   2篇
  1920年   1篇
  1915年   1篇
排序方式: 共有127条查询结果,搜索用时 265 毫秒
1.
Jens-Uwe Klügel   《Earth》2008,88(1-2):1-32
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies.

Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.  相似文献   

2.
Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.  相似文献   
3.
4.
The Wattkopftunnel, near Ettlingen (Nordschwarzwald), drives through the eastern margin of the Rheingraben. The tunnel passes cenozoic and mesozoic sediments. Early quarternary and tertiary beds are situated west of the main thrust of the Rheingraben. Fossil record indicates upper Oligocene age (Chatt) for parts of the tertiary sediments. At the eastern border of the Rheingraben, wedges of jurassic and middle triassic series are squeezed. East of the Rheingraben the tunnel drives in the lower triassic Bausandstein. The eastern margin of the Rheingraben was investigated in detail during tunneling. Faults of the Rheingraben margin are distributed in an 130 meter wide fault zone in the tunnel. Total stratigraphic separation by the normal faults reaches more than 2 000 meters. The cenozoic sequence suffered synsedimentary to early diagenetic deformation, while the mesozoic series are characterized by ruptural deformation. The fault- and joint system is directed in the rheinische Richtung (SSW-NNE). East of the Rheingraben a second direction occur, running parallel to the lower Albtal (W-E).
  相似文献   
5.
Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4–80% for different 30–50 days long air parcel trajectories, the mean scatter of model results around these values is only about ±1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about ±7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation.  相似文献   
6.
7.
8.
Measurement of meteorological quantities with fast-response sensors by means of the eddycorrelation technique allows calculation of turbulent transport without too severe demands with regard to stationarity and homogeneity. However, the measurement system causes frequency-dependent errors due to measuring height, averaging interval, sampling rate and mean wind speed. A correction method (Moore, 1986) was applied to measurements taken on a 130 m tower located at the German North Sea coast. The errors for 10-min averages, obtained at a height of 10 m were between 20 and 30%, mainly caused by the inertia of the sensors, increasing to between 30 and 60% at 130 m height due to a loss of low-frequency parts of the spectra because of the averaging interval. The corrections to the obtained data were validated by comparing the cospectra calculated from the data with the spectra used for the computation of the correction factors.  相似文献   
9.
W. Krauß 《Ocean Dynamics》1963,16(5):238-239
Ohne Zusammenfassung  相似文献   
10.
Zusammenfassung Es wird gezeigt, daß in den höheren Breiten zwischen dem ozeanischen Stromfeld und der Windverteilung beträchtliche Unterschiede bestehen. Daher wird als Ursache des Strömungssystems nicht das Windfeld, sondern die Süßwasserzufuhr vom Festland angesehen, welche als Salzgehaltsstörung das küstennahe Massenfeld beherrscht und entsprechend dem Theorem nach Bjerknes ein Gradientstromsystem bedingt, welches dem beobachteten entspricht.
A contribution to the system of ocean currents in the higher latitudes
Summary It is demonstrated that in the high latitudes, considerable differences exist between the oceanic current system and the wind distribution. It is, therefore, supposed that it is not the windfield that gives rise to the existing current system but the supply of fresh water from the continent which, as a salinity disturbance, plays a dominant part in the field of mass near the coast. According to Bjerknes' theorem, the disturbance of salinity conditions a gradient current system; this is in good agreement with the observations.

Sur le système de courants marins par les hautes latitudes
Résumé On montre qu'il existe par les hautes latitudes de différences considérables entre le système de courants océaniques et la distribution des vents. Pour cette raison, on suppose que c'est l'afflux d'eau douce venant du continent et non le champ du vent qui engendre le système de courants dominant, sous la forme d'une perturbation de salinité, le champ de masse près des côtes. D'après le théorème de Bjerknes le système de courants de gradient est la conséquence nécessaire de la perturbation de salinité ce qui est en bon accord avec les observations faites dans ce domaine.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号