首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
  国内免费   7篇
测绘学   2篇
大气科学   4篇
地质学   5篇
海洋学   5篇
综合类   9篇
  2021年   2篇
  2020年   3篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Hu  Shijian  Liu  Lingling  Guan  Cong  Zhang  Linlin  Wang  Jianing  Wang  Qingye  Ma  Jie  Wang  Fujun  Jia  Fan  Feng  Junqiao  Lu  Xi  Wang  Fan  Hu  Dunxin 《中国海洋湖沼学报》2020,38(4):1092-1107
Near-inertial oscillation is an important physical process transferring surface wind energy into deep ocean.We investigated the near-inertial kinetic energy(NIKE) variability using acoustic Doppler current profiler measurements from a mooring array deployed in the tropical western Pacific Ocean along130°E at 8.5°N,11°N,12.6°N,15°N,and 17.5°N from September 2015 to January 2018.Spatial features,decay timescales,and significant seasonal variability of the observed NIKE were described.At the mooring sites of 17.5°N,15°N,and 12.6°N,the NIKE peaks occurred in boreal autumn and the NIKE troughs were observed in boreal spring.By contrast,the NIKE at 11°N and 8.5°N showed peaks in winter and troughs in summer.Tropical cyclones and strong wind events played an important role in the emergence of high-NIKE events and explained the seasonality and latitudinal characteristics of the observed NIKE.  相似文献   
2.
Monthly ocean temperature from ORAS4 datasets and atmospheric data from NCEP/NCAR Reanalysis I/II were used to analyze the relationship between the intensity of the South Asian summer monsoon(SASM) and upper ocean heat content(HC) in the tropical Indo-Pacific Ocean.The monsoon was differentiated into a Southwest Asian Summer Monsoon(SWASM)(2.5°–20°N,35°–70°E) and Southeast Asian Summer Monsoon(SEASM)(2.5°–20°N,70°–110°E).Results show that before the 1976/77 climate shift,the SWASM was strongly related to HC in the southern Indian Ocean and tropical Pacific Ocean.The southern Indian Ocean affected SWASM by altering the pressure gradient between southern Africa and the northern Indian Ocean and by enhancing the Somali cross-equatorial flow.The tropical Pacific impacted the SWASM through the remote forcing of ENSO.After the 1976/77 shift,there was a close relationship between equatorial central Pacific HC and the SEASM.However,before that shift,their relationship was weak.  相似文献   
3.
The spatiotemporal variability of equatorial Pacific upper ocean heat content (HC) and subsurface heat during two types of El Niño-Southern Oscillation (ENSO), namely eastern and central Pacific (EP and CP) types, is investigated using subsurface ocean heat budget analysis. Results show that HC tendencies during both types of ENSO are mainly controlled by oceanic heat advection beneath the mixed layer to the thermocline, and the role of net surface heat flux can be neglected. The most important three terms are the zonal and vertical advections of anomalous heat by climatological currents (QU 0 T′, QW 0 T′) and zonal advection of climatological heat by anomalous current (QUT 0). The large contribution of QU 0 T′ extends from west to east along the equatorial Pacific. The considerable contribution of QUT 0 is confined to the east of 160°W, and that of the QW 0 T′ is observed in the central Pacific between 180°E and 120°W. In particular, a major contribution of QW 0 T′ is also observed in the far eastern Pacific east of 100°W during EP ENSO. There is also a small contribution from meridional advection of climatological heat by anomalous current (QVT 0). In contrast, the meridional advection of anomalous heat by climatological currents (QV 0 T′) and vertical advection of climatological heat by anomalous current (QWT 0) are two damping factors in the HC tendency, with the former dominating. Differences in spatial distribution of the heat advection associated with the two types of ENSO are also presented. We define a warm water heat index (WWH) as integrated heat content above 26 kg m?3 potential density (26σ ? ) isopycnal depth within 130°E–80°W and 5°S–5°N. Further examination suggests that the recharge–discharge of WWH is involved in both types of El Niño, though with some differences. First, it takes about 42 (55) months for the evolution of a recharge–discharge cycle during an EP (CP) ENSO. Second, the EP El Niño event peaks during the discharge phase, 7–8 months after the recharge time. The CP El Niño peaks during the recharge phase, 4–5 months before the recharge time. The locations of HC anomalies in the El Niño mature phase relative to those at recharged time explain why the EP and CP El Niño peak in different stages of the recharge–discharge process.  相似文献   
4.
The influence of the tropical Indo-Pacific Ocean heat content on the onset of the Bay of Bengal summer monsoon(BOBSM) onset was investigated using atmospheric data from the NCEP and ocean subsurface temperature data from the Japan Metorology Agency(JMA).Results showed that the onset time of the BOBSM is highly related to the tropical Pacific upper ocean heat content(HC),especially in the key region of the western Pacific warm pool(WPWP),during the preceding winter and spring.When the HC anomalies in the WPWP are positive(negative),the onset of the BOBSM is usually early(late).Accompanied by the variation of the convection activity over the WPWP,mainly induced by the underlying ocean temperature anomalies,the Walker circulation becomes stronger or weaker.This enhances or weakens the westerly over the tropical Indian Ocean flowing into the BOB in the boreal spring,which is essential to BOBSM onset.The possible mechanism of influence of cyclonic/anti-cyclonic circulation over the northwestern tropical Pacific on BOBSM onset is also discussed.  相似文献   
5.
The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST)data during the period 1958–2010.All the first empirical orthogonal function(EOF)modes of the SST anomalies(SSTA)in different domains represent the basin-wide warming and are closely related to the Pacific El Ni o–Southern Oscillation(ENSO)phenomenon.Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean.The second EOF modes in different domains show different features.It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean(Indian Ocean dipole,IOD),and a southwest-northeast SSTA dipole in the southern Indian Ocean(Indian Ocean subtropical dipole,IOSD).It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale,in which the IOD pattern does not appear.A correlation analysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later.One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed.The IOSD and the IOD can occur in sequence with the help of the Mascarene high.The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event,likely due to the positive wind–evaporation–SST feedback mechanism.The Mascarene high will be weakened or intensified by this SSTA,which can affect the atmosphere in the tropical region by teleconnection.The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases(decreases).Hence,an anticyclone(cyclone)circulation appears over the Arabian Sea-India continent.The easterly or westerly anomalies appear in the equatorial Indian Ocean,inducing the onset stage of the IOD.This study shows that the SSTA associated with the IOSD can lead to the onset of IOD with the aid of atmosphere circulation and also explains why some IOD events in the tropical tend to be followed by IOSD in the southern Indian Ocean.  相似文献   
6.
This study focused on the warm pool-cold tongue confluence region (WCCR) in the central tropical Pacific Ocean where the warm and fresh water from the warm pool encounters with cold and saline water from the cold tongue. The WCCR is characterized by strong surface salinity front, shallow mixed layer and thick barrier layer. The WCCR is the key area for the development of different types of El Ni?o, and also the area with significant systematic bias in climate models. In order to reveal what role the structure and variability of salinity will play in the ocean dynamic and thermal conditions, and the cycle of the ENSO, a key project was approved by the National Natural Science Foundation of China (NSFC) in July, 2017. The key scientific issues that will be addressed in the project are as follows: ①to depict the three-dimensional structure and variability of salinity in the WCCR; ②to reveal the mechanism for the variability of salinity front and barrier layer; and ③to illustrate the main processes that control the impact of salinity on the upper-ocean variation in the tropical Pacific and the cycle of the ENSO. The present study will improve our understanding of the tropical ocean dynamics and ENSO dynamics, and will enhance the prediction skill of the ENSO.  相似文献   
7.
Hu  Dunxin  Wang  Fan  Sprintall  Janet  Wu  Lixin  Riser  Stephen  Cravatte  Sophie  Gordon  Arnold  Zhang  Linlin  Chen  Dake  Zhou  Hui  Ando  Kentaro  Wang  Jianing  Lee  Jae-Hak  Hu  Shijian  Wang  Jing  Zhang  Dongxiao  Feng  Junqiao  Liu  Lingling  Villanoy  Cesar  Kaluwin  Chalapan  Qu  Tangdong  Ma  Yixin 《中国海洋湖沼学报》2020,38(4):906-929
The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.  相似文献   
8.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   
9.
基于等价分析法评估溢油事故的自然资源损害   总被引:2,自引:0,他引:2  
尽管国际公约和许多国家立法已将海上溢油事故导致的自然资源损失列入索赔范围,然而,在量化和货币化损害以及确定索赔和修复范围等方面尚未建立被广泛接受的计算方法。生境等价分析(Habitat Equivalency Analysis,HEA)和资源等价分析(Resource Equivalency Analysis,REA)是美国和欧盟应用于评估自然资源损害的理论方法,二者的关键假设是受损的生态服务损失和修复计划的服务收益应当相等。HEA结果依赖于生态服务价值标尺选择、服务价值水平、恢复曲线形状、修复计划时长以及贴现率等;REA结果受死亡生物数量和年龄组成的影响。HEA和REA的非货币形式结果补偿的并非生态环境,而是人类社会福祉。目前,一些货币化损失的方法已被提出,然而传统经济学家和生态经济学家之间存在争议。美国部分法庭承认HEA和REA方法,其结果为法庭索赔提供数据支持。如果将生态学和经济学原理结合考虑,将能够促进等价分析法的深入发展,推动索赔工作更加有理有据。  相似文献   
10.
The low-frequency atmosphere-ocean coupled variability of the southern Indian Ocean(SIO) was investigated using observation data over 1958-2010.These data were obtained from ECMWF for sea level pressure(SLP) and wind,from NCEP/NCAR for heat fluxes,and from the Hadley Center for SST.To obtain the coupled air-sea variability,we performed SVD analyses on SST and SLP.The primary coupled mode represents 43% of the total square covariance and is featured by weak westerly winds along 45-30 S.This weakened subtropical anticyclone forces fluctuations in a well-known subtropical dipole structure in the SST via wind-induced processes.The SST changes in response to atmosphere forcing and is predictable with a lead-time of 1-2 months.Atmosphere-ocean coupling of this mode is strongest during the austral summer.Its principle component is characterized by mixed interannual and interdecadal fluctuations.There is a strong relationship between the first mode and Antarctic Oscillation(AAO).The AAO can influence the coupled processes in the SIO by modulating the subtropical high.The second mode,accounting for 30% of the total square covariance,represents a 25-year period interdecadal oscillation in the strength of the subtropical anticyclone that is accompanied by fluctuations of a monopole structure in the SST along the 35-25 S band.It is caused by subsidence of the atmosphere.The present study also shows that physical processes of both local thermodynamic and ocean circulation in the SIO have a crucial role in the formation of the atmosphere-ocean covariability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号